К разрешимости и построению решения периодической краевой задачи для системы матричных дифференциальных уравнений Риккати

Д. В. Роголев

Получены коэффициентные достаточные условия однозначной разрешимости периодической краевой задачи для системы матричных дифференциальных уравнений Риккати.

Ключевые слова: периодическая краевая задача, матричное уравнение Риккати.

On the solvability and construction of the solution of a periodic boundary value problem for the system of matrix Riccati differential equations

D. V. Rogolev

Coefficient sufficient conditions for the unique solvability of a periodic boundary value problem for the system of matrix Riccati differential equations are obtained.

Keywords: periodic boundary value problem, matrix Riccati equation.

Рассмотрим краевую задачу типа [1–3]

$$\frac{dX}{dt} = G_1(t, X, Y), \tag{1}$$

$$\frac{d\mathbf{Y}}{dt} = \mathbf{G}_2(t, \mathbf{X}, \mathbf{Y}),\tag{2}$$

$$X(0) = X(\omega), \tag{3}$$

$$Y(0) = Y(\omega), \tag{4}$$

где

$$\begin{split} &G_{1}\big(t,\!X,\!Y\big)\!=\!A_{1}\big(t\big)X+XB_{1}\big(t\big)\!+X\big(S_{1}\big(t\big)X+S_{2}\big(t\big)Y\big)\!+C_{1}\big(t\big)X^{2}+X^{2}C_{2}\big(t\big)\!+\!F_{1}\big(t\big),\\ &G_{2}\big(t,\!X,\!Y\big)\!=\!A_{2}\big(t\big)Y+YB_{2}\big(t\big)\!+Y\big(P_{1}\big(t\big)X+P_{2}\big(t\big)Y\big)\!+Q_{1}\big(t\big)Y^{2}+Y^{2}Q_{2}\big(t\big)\!+\!F_{2}\big(t\big);\\ &\text{с коэффициентами класса }\mathbb{C}\big(I,\mathbb{R}^{n\times n}\big),\;(t,\!X,\!Y\big)\!\in\!I\times\mathbb{R}^{n\times n}\times\mathbb{R}^{n\times n};\;I=\!\left[0,\omega\right],\;\omega\!>\!0. \end{split}$$

Система уравнений (1), (2) представляет собой многомерную систему дифференциальных уравнений специального вида. В частности, к таким уравнениям относятся матричные дифференциальные уравнения Ляпунова, Риккати, имеющие большое значение в теории и приложениях дифференциальных уравнений. Указанная система впервые появилась, по-видимому, в теории дифференциальных игр (см., например, [1]). В случае постоянных коэффициентов в (1), (2) получим систему, аналогичную [1].

Примем следующие обозначения:

[©] Роголев Д. В., 2022

$$D = \left\{ (t, X, Y) : 0 \le t \le \omega, \|X\| \le \rho_1, \|Y\| \le \rho_2 \right\}, \ \tilde{A}_i(\omega) = \int_0^\omega A_i(\tau) d\tau, \ \gamma_i = \|\tilde{A}_i^{-1}(\omega)\|,$$

$$\alpha_i = \max_t \|A_i(t)\|, \ \beta_i = \max_t \|B_i(t)\|, \ \delta_i = \max_t \|S_i(t)\|, \ \mu_i = \max_t \|P_i(t)\|,$$

$$\sigma_i = \max_t \|C_i(t)\|, \ v_i = \max_t \|Q_i(t)\|, \ h_i = \max_t \|F_i(t)\|,$$

$$q_{11} = \gamma_1 \left[\frac{1}{2}\alpha_1\omega^2(\alpha_1 + \beta_1 + 2(\delta_1 + \sigma_1 + \sigma_2)\rho_1 + \delta_2\rho_2) + \omega(\beta_1 + 2(\delta_1 + \sigma_1 + \sigma_2)\rho_1 + \delta_2\rho_2) + \omega(\beta_1 + 2(\delta_1 + \sigma_1 + \sigma_2)\rho_1 + \delta_2\rho_2) \right], \ q_{12} = \gamma_1\delta_2\rho_1\omega\left(\frac{1}{2}\alpha_1\omega + 1\right),$$

$$q_{21} = \gamma_2\mu_1\rho_2\omega\left(\frac{1}{2}\alpha_2\omega + 1\right), \ q_{22} = \gamma_2\left[\frac{1}{2}\alpha_2\omega^2(\alpha_2 + \beta_2 + \mu_1\rho_1 + 2(\mu_2 + \nu_1 + \nu_2)\rho_2) + \omega(\beta_2 + \mu_1\rho_1 + 2(\mu_2 + \nu_1 + \nu_2)\rho_2) \right],$$

где $t \in I$, $\rho_1, \rho_2 > 0$.

С помощью конструктивного метода [4] задачу (1)—(4) будем рассматривать в конечномерной банаховой алгебре $\mathfrak{B}(n)$ непрерывных матриц-функций с нормой $\|T\|_C = \max_t \|T(t)\|$, где $\|\bullet\|$ — определенная норма матриц в этой алгебре, например, любая из норм, приведённых в [5], $T \in \mathbb{C}(I,\mathbb{R}^{n \times n})$. Предлагаемая работа является продолжением и развитием [1–3, 6].

Теорема. Пусть выполнены следующие условия:

1)
$$\det \tilde{A}_{i} \neq 0$$
 $(i = 1, 2)$, (5)

2) $\gamma_{1} \left\{ \frac{1}{2} \alpha_{1} \omega^{2} \left[(\alpha_{1} + \beta_{1}) \rho_{1} + (\delta_{1} + \sigma_{1} + \sigma_{2}) \rho_{1}^{2} + \delta_{2} \rho_{1} \rho_{2} + h_{1} \right] + \omega \left(\beta_{1} \rho_{1} + (\delta_{1} + \sigma_{1} + \sigma_{2}) \rho_{1}^{2} + \delta_{2} \rho_{1} \rho_{2} + h_{1} \right) \right\} \leq \rho_{1}$, (6)

$$\gamma_{2} \left\{ \frac{1}{2} \alpha_{2} \omega^{2} \left[(\alpha_{2} + \beta_{2}) \rho_{2} + (\mu_{2} + \nu_{1} + \nu_{2}) \rho_{2}^{2} + \mu_{1} \rho_{1} \rho_{2} + h_{2} \right] + \omega \left(\beta_{2} \rho_{2} + (\mu_{2} + \nu_{1} + \nu_{2}) \rho_{2}^{2} + \mu_{1} \rho_{1} \rho_{2} + h_{2} \right) \right\} \leq \rho_{2}$$
,
3) $q_{11} < 1$, $\det (E - Q) > 0$, (7)

Где $E = diag(1,1)$, $Q = (q_{ij})$.

Тогда задача (1)–(4) однозначно разрешима в области D.

Доказательство. С помощью методики, используемой в [3], на основе регуляризатора

$$\int_{0}^{\omega} A(\tau)Z(\tau)d\tau = \int_{0}^{\omega} A(\tau)d\tau \cdot Z(t) - \int_{0}^{t} \left(\int_{0}^{\tau} A(\sigma)d\sigma\right)dZ(\tau) + \int_{t}^{\omega} \left(\int_{\tau}^{\omega} A(\sigma)d\sigma\right)dZ(\tau),$$

где $A = \{A_1, A_2\}$, $Z = \{X, Y\}$, сначала получим интегральную задачу, эквивалентную задаче (1)–(4),

$$X(t) = \tilde{A}_{1}^{-1}(\omega) \left\{ \int_{0}^{t} \left(\int_{0}^{\tau} A_{1}(\sigma) d\sigma \right) G_{1}(\tau, X(\tau), Y(\tau)) d\tau - \int_{t}^{\omega} \left(\int_{\tau}^{\omega} A_{1}(\sigma) d\sigma \right) G_{1}(\tau, X(\tau), Y(\tau)) d\tau - \int_{t}^{\omega} \left[G_{1}(\tau, X(\tau), Y(\tau)) - A_{1}(\tau) X(\tau) \right] d\tau \right\},$$

$$(8)$$

$$Y(t) = \tilde{A}_{2}^{-1}(\omega) \left\{ \int_{0}^{t} \left(\int_{0}^{\tau} A_{2}(\sigma) d\sigma \right) G_{2}(\tau, X(\tau), Y(\tau)) d\tau - \int_{t}^{\omega} \left(\int_{\tau}^{\omega} A_{2}(\sigma) d\sigma \right) G_{2}(\tau, X(\tau), Y(\tau)) d\tau - \int_{t}^{\omega} \left[G_{2}(\tau, X(\tau), Y(\tau)) - A_{2}(\tau) Y(\tau) \right] d\tau \right\}.$$

$$(9)$$

Систему (8), (9) запишем в операторном виде

$$X = L_1(X, Y), \tag{10}$$

$$Y = L_{\gamma}(X, Y), \tag{11}$$

где через \mathcal{L}_i (i=1,2) обозначены соответствующие интегральные операторы в (8), (9). Эти операторы действуют на множестве $\left\{\left(\mathbf{X}(t),\mathbf{Y}(t)\right):\left\|\mathbf{X}\right\|_{\mathcal{C}}<\infty,\left\|\mathbf{Y}\right\|_{\mathcal{C}}<\infty\right\}$.

К операторной системе (10), (11) применим модификацию [4] обобщенного принципа Каччопполи – Банаха [7] на множестве $\tilde{D} = \left\{ \left(\mathbf{X}(t), \mathbf{Y}(t) \right) : \left\| \mathbf{X} \right\|_{C} \leq \rho_{1}, \left\| \mathbf{Y} \right\|_{C} \leq \rho_{2} \right\}$ с использованием условий 2), 3) данной теоремы.

Для построения решения системы матричных интегральных уравнений (8), (9) воспользуемся классическим методом последовательных приближений (см., например, [8]):

$$X_{k}(t) = \tilde{A}_{1}^{-1}(\omega) \left\{ \int_{0}^{t} \left(\int_{0}^{\tau} A_{1}(\sigma) d\sigma \right) G_{1}(\tau, X_{k-1}(\tau), Y_{k-1}(\tau)) d\tau - \int_{t}^{\omega} \left(\int_{\tau}^{\omega} A_{1}(\sigma) d\sigma \right) G_{1}(\tau, X_{k-1}(\tau), Y_{k-1}(\tau)) d\tau - \int_{0}^{\omega} \left[G_{1}(\tau, X_{k-1}(\tau), Y_{k-1}(\tau)) - A_{1}(\tau) X_{k-1}(\tau) \right] d\tau \right\},$$

$$(12)$$

$$Y_{k}(t) = \tilde{A}_{2}^{-1}(\omega) \left\{ \int_{0}^{t} \left(\int_{0}^{\tau} A_{2}(\sigma) d\sigma \right) G_{2}(\tau, X_{k-1}(\tau), Y_{k-1}(\tau)) d\tau - \int_{t}^{\omega} \left(\int_{\tau}^{\omega} A_{2}(\sigma) d\sigma \right) G_{2}(\tau, X_{k-1}(\tau), Y_{k-1}(\tau)) d\tau - \int_{0}^{\omega} \left[G_{2}(\tau, X_{k-1}(\tau), Y_{k-1}(\tau)) - A_{2}(\tau) Y_{k-1}(\tau) \right] d\tau \right\}, \quad k = 1, 2, ..., \tag{13}$$

где $X_0(t)$, $Y_0(t)$ – произвольные матричные функции класса $\mathbb{C}[0,\omega]$, принадлежащие множеству \tilde{D} .

Используя условия 2), можно показать, что все приближенные решения, полученные по алгоритму (12), (13), принадлежат множеству \tilde{D} .

На основе условия 3) нетрудно доказать, что приближения, построенные по алгоритму (12), (13), сходятся равномерно по $t \in I$ к решению задачи (8), (9), при этом справедливы оценки

$$\tilde{Z}_{i} \le (E - Q)^{-1} Q^{i} Z_{0}, i = 0, 1, 2, ...,$$
 (14)

$$Z \le \tilde{Z}_0 + (E - Q)^{-1} Z_0,$$
 (15)

где

$$\tilde{\mathbf{Z}}_{i} = \begin{pmatrix} \left\|\mathbf{X} - \mathbf{X}_{i}\right\|_{C} \\ \left\|\mathbf{Y} - \mathbf{Y}_{i}\right\|_{C} \end{pmatrix}, \ \mathbf{Z}_{0} = \begin{pmatrix} \left\|\mathbf{X}_{1} - \mathbf{X}_{0}\right\|_{C} \\ \left\|\mathbf{Y}_{1} - \mathbf{Y}_{0}\right\|_{C} \end{pmatrix}, \ \mathbf{Z} = \begin{pmatrix} \left\|\mathbf{X}\right\|_{C} \\ \left\|\mathbf{Y}\right\|_{C} \end{pmatrix}, \ \tilde{\mathbf{Z}}_{0} = \begin{pmatrix} \left\|\mathbf{X}_{0}\right\|_{C} \\ \left\|\mathbf{Y}_{0}\right\|_{C} \end{pmatrix}.$$

Заметим, что эти решения не обязаны удовлетворять краевым условиям (3), (4). Поэтому следует создавать более эффективные в этом смысле алгоритмы построения решения задачи (1)–(4). Один из таких алгоритмов можно разработать на основе применения подхода [4, гл. 3] и получить оценки типа (14), (15). В дифференциальной форме он имеет вид

$$\frac{d\mathbf{X}_{k+1}}{dt} = \mathbf{G}_1(t, \mathbf{X}_k, \mathbf{Y}_k),\tag{16}$$

$$\frac{d\mathbf{Y}_{k+1}}{dt} = \mathbf{G}_2(t, \mathbf{X}_k, \mathbf{Y}_k),\tag{17}$$

$$X_{k+1}(0) = X_{k+1}(\omega),$$
 (18)

$$Y_{k+1}(0) = Y_{k+1}(\omega), k = 0,1,2,...,$$
 (19)

где начальное приближение X_0 , Y_0 можно получить в виде постоянных матриц на основе (16), (17) при k=0 из соответствующих условий (18), (19) для приближения $X_1(t)$, $Y_1(t)$,

$$\int_{0}^{\infty} G_{1}(\tau, X_{0}, Y_{0}) d\tau = 0,$$

$$\int_{0}^{\omega} G_{2}(\tau, X_{0}, Y_{0}) d\tau = 0.$$

Исследованию таких алгоритмов будут посвящены дальнейшие работы автора.

Библиографический список

- 1. *Jódar, L.* Explicit solutions of Riccati equations appearing in differential games / L Jódar // Applied Mathematics Letters. 1990. V. 3. № 4. P. 9–12.
- 2. *Анисович*, *В*. *В*. Об одном подходе к решению задач оптимального управления / В. В. Анисович, Б. И. Крюков, В. М. Мадорский // Доклады АН СССР. 1980. Т. 251, № 2. —С. 265—268.
- 3. *Лаптинский, В. Н.* Конструктивные методы построения решения периодической краевой задачи для системы матричных дифференциальных уравнений типа Риккати / В. Н. Лаптинский, Д. В. Роголев // Дифференциальные уравнения. 2011. Т. 47, № 10. С. 1412–1420.
- 4. *Лаптинский, В. Н.* Конструктивный анализ управляемых колебательных систем / В. Н. Лаптинский. Минск : ИМ НАН Беларуси, 1998. 300 с.
- 5. Демидович, Б. П. Лекции по математической теории устойчивости / Б. П. Демидович. Москва : Наука, 1967. 472 с.
- 6. *Роголев*, Д. В. К разрешимости периодической краевой задачи для системы матричных дифференциальных уравнений Риккати / Д. В. Роголев // Актуальные проблемы науки и техники: материалы Междунар. науч.-техн. конф. Сарапул, 20–22 мая 2021 г. / Минобрнауки Рос. Федерации. Сарапульский политехнический институт (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова». Ижевск : Изд-во УИР ИжГТУ имени М. Т. Калашникова, 2021. С. 21–26.
- 7. Приближённое решение операторных уравнений / М. А. Красносельский, Г. М. Вайникко, П. П. Забрейко и др. Москва : Наука, 1969. 455 с.
- 8. *Канторович, Л. В.* Функциональный анализ / Л. В. Канторович, Г. П. Акилов. Москва : Наука, 1977. 744 с.

Сведения об авторе

Дмитрий Владимирович Роголев, кандидат физико-математических наук, доцент кафедры «Высшая математика», Белорусско-Российский университет (Республика Беларусь, г. Могилёв), d-rogolev@tut.by