Таким образом, можно рассматривать источники большего размера для решения данной задачи, также отметим, что данный алгоритм несложно реализовать в математических пакетах.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. **Хопкрофт,** Дж. Э. Введение в теорию автоматов, языков и вычислений: пер. с англ. / Дж. Э. Хопкрофт, Р. Мотвани, Дж. Д. Ульман. 2-е изд. Москва: Вильямс, 2008. 528 с.
- 2. **Пентус, А. Е.** Теория формальных языков: учебное пособие / А. Е. Пентус, М. Р. Пентус. Москва: ЦПИ при мех.-мат. фак. МГУ, 2004. 80 с.
- 3. **Белоусов, А. И.** Дискретная математика: учебное пособие / А. И. Белоусов, С. Б. Ткачёв; под ред. В. С. Зарубина, А. П. Крищенко. 2-е изд., стер. Москва: МГТУ им. Н. Э. Баумана, 2002. 744 с.
- 4. Формальные языки и автоматы: методические указания к выполнению типового расчета / Сост. А. А. Мастихина. Москва: МГТУ им. Н. Э. Баумана.

УДК 531.1:004

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ДВИЖЕНИЯ МЕХАНИЧЕСКОГО ОБЪЕКТА В СРЕДЕ МАТНСАD

Э. Ф. МУРЗИНА, И. И. ЗАГИРОВ Башкирский государственный аграрный университет Уфа, Россия

Учебный план по подготовке бакалавров по направлению 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов» и 35.03.06 «Агроинженерия» включает в обязательной части блока 1 две математические дисциплины: «Математика» и «Математическая обработка экспериментальных данных». Если первая дисциплина является классической и менее привлекательна для студентов, то вторая – вызывает энтузиазм. К сожалению, количество часов всего лишь 72, из них 22 ч аудиторной работы, но тем не менее, мы изучаем два раздела: теория приближений функций и статистические методы обработки. Но в рамках проведения лабораторных работ студенты сначала выполняют математическую обработку результатов практической инженерной задачи, которая требует знания классической математики и навыков работы в пакете Mathcad [1, с. 330].

Рассмотрим подробнее задачу по теоретической механике, которая была предложена студенту второго курса, решение которой он знал, т. к. изучал соответствующую дисциплину, и должен был проверить результаты в математическом пакете Mathcad.

Пусть прямая AB катится без скольжения по окружности радиуса R=0.5 м так, что угол ϕ изменяется по закону $\phi=\frac{\pi}{4}\cdot t$ рад. В начальный момент точка M совпадает с точкой K. Требуется по заданному движению механизма составить уравнения движения точки M в декартовой системе координат; вычертить траекторию точки M; найти скорость, касательное, нормальное и полное ускорения точки M; определить радиус кривизны траектории; построить графики скорости и полного ускорения точки.

На рис. 1 представлены исходные данные (кинематическая схема) [2, с. 58].

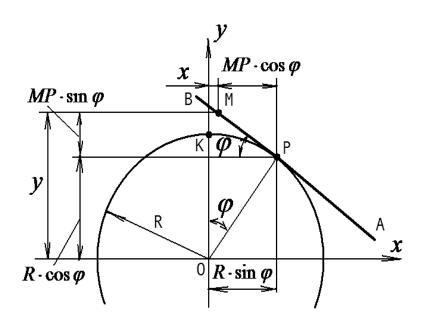


Рис. 1. Кинематическая схема

Все расчеты производятся в пакете Mathcad, часть из них представлена на рис. 2.

Конечные результаты приведены на рис. 3.

По результатам вычислений построена траектория и графики изменения скорости и ускорения точки M (рис. 4).

Таким образом, реализация требований ФГОС ВО по нашим направлениям подготовки, а именно общепрофессиональной компетенции ОПК-1 «Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий» [3, с. 8], в данном случае выполнена. Произошел прогресс развития профессиональных качеств, получение более глубоких знаний в рамках выбранного направления подготовки: студентом исследована кинематика точки, а именно установлен математический способ задания (описания) движения точки, определены закон движения точки и кинематические характеристики этого движения [4, с. 60], появились навыки работы на Mathcad.

$$x(t) := R \cdot \sin\left(t \frac{\pi}{4}\right) - R \cdot t \cdot \frac{\pi}{4} \cdot \cos\left(t \frac{\pi}{4}\right) \qquad y(t) := R \cdot \cos\left(t \frac{\pi}{4}\right) + R \cdot t \cdot \frac{\pi}{4} \cdot \sin\left(t \frac{\pi}{4}\right)$$

$$vx(t) := \frac{d}{dt}x(t) \qquad vx(t) \rightarrow \frac{\pi^2 \cdot R \cdot t \cdot \sin\left(\frac{\pi \cdot t}{4}\right)}{16} \qquad vy(t) := \frac{d}{dt}y(t) \qquad vy(t) \rightarrow \frac{\pi^2 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16}$$

$$v(t) := \sqrt{\left(vx(t)\right)^2 + \left(vy(t)\right)^2} \qquad v(t) \rightarrow \sqrt{\frac{\pi^4 \cdot R^2 \cdot t^2 \cdot \cos\left(\frac{\pi \cdot t}{4}\right)^2}{256} + \frac{\pi^4 \cdot R^2 \cdot t^2 \cdot \sin\left(\frac{\pi \cdot t}{4}\right)^2}{256}}$$

$$ax(t) := \frac{d}{dt}vx(t) \qquad ax(t) \rightarrow \frac{\pi^2 \cdot R \cdot \sin\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{64}$$

$$ay(t) := \frac{d}{dt}vy(t) \qquad ay(t) \rightarrow \frac{\pi^2 \cdot R \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} - \frac{\pi^3 \cdot R \cdot t \cdot \sin\left(\frac{\pi \cdot t}{4}\right)}{64}$$

$$a(t) := \sqrt{\left(ax(t)\right)^2 + \left(ay(t)\right)^2}$$

$$a(t) \rightarrow \sqrt{\frac{\pi^2 \cdot R \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} - \frac{\pi^3 \cdot R \cdot t \cdot \sin\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} - \frac{\pi^3 \cdot R \cdot t \cdot \sin\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot R \cdot t \cdot \cos\left(\frac{\pi \cdot t}{4}\right)}{16} + \frac{\pi^3 \cdot$$

Рис. 2. Фрагмент решения задачи в среде Mathcad

t =	vx(t) =	vy(t) =	v(t) =	ax(t) =	ay(t) =	a(t) =	aT(t) =	an(t) =	$\rho(t) =$
0	0.000	0	0	0.000	0.343	0.343	0	0.343	. 0
0.154	0.006	0.052	0.053	0.082	0.335	0.345	0.343	0.041	0.067
0.308	0.025	0.102	0.106	0.163	0.313	0.353	0.343	0.083	0.134
0.462	0.056	0.148	0.158	0.238	0.276	0.365	0.343	0.124	0.202
0.616	0.098	0.187	0.211	0.306	0.226	0.381	0.343	0.166	0.269
0.77	0.150	0.217	0.264	0.365	0.164	0.4	0.343	0.207	0.336
0.924	0.210	0.237	0.317	0.413	0.091	0.423	0.343	0.249	0.403
1.078	0.277	0.245	0.369	0.449	9.692·10-3	0.449	0.343	0.29	0.47
1.232	0.348	0.24	0.422	0.470	-0.079	0.477	0.343	0.332	0.538
1.386	0.421	0.22	0.475	0.477	-0.172	0.507	0.343	0.373	0.605
1.54	0.494	0.187	0.528	0.467	-0.267	0.538	0.343	0.414	0.672
1.694	0.564	0.138	0.581	0.441	-0.361	0.57	0.343	0.456	0.739
1.848	0.629	0.075	0.633	0.399	-0.453	0.604	0.343	0.497	0.806
2.002	0.686	-1.078·10-3	0.686	0.342	-0.539	0.639	0.343	0.539	0.874

Рис. 3. Кинематические характеристики точки М

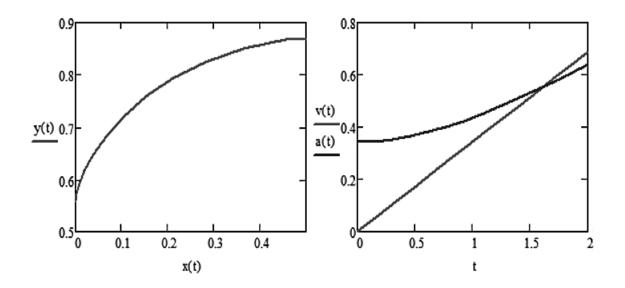


Рис. 4. Траектория точки M и графики скорости и полного ускорения в среде Mathcad

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. **Арсланбекова, С. А.** Использование прикладных программ как составляющая цифровизации образования / С. А. Арсланбекова, Ф. Н. Галлямов, Э. Ф. Мурзина // Конструирование стратегических приоритетов развития образования как ответ на вызовы третьего тысячелетия: материалы III Всерос. науч.-практ. конф. – Уфа, 2022. – С. 330–334.

- 2. **Нафиков, М. 3.** Теоретическая механика. Раздел кинематика. Конспект лекций: учебно-методическое пособие по направлениям подготовки бакалавров: 110800 «Агроинженерия», 140100 «Теплотехника и теплоэнергетика» / М. 3. Нафиков. Уфа: Башкир. ГАУ, 2011. 67 с.
- 3. Российская Федерация. Об утверждении федерального образовательного стандарта высшего образования бакалавриат по направлению подготовки 35.03.06 «Агроинженерия». 2017. С. 8.
- 4. **Загиров, И. И.** Повышение интенсивности и эффективности усвоения общетехнических дисциплин студентов инженерных специальностей / И. И. Загиров // Инновационные методы преподавания в высшей школе: материалы Междунар. науч.-метод. конф. Уфа: Башкир. ГАУ, 2011. С. 59–60.

УДК 517.2

СИСТЕМА УПРАЖНЕНИЙ ДЛЯ МАТЕМАТИЧЕСКОГО КРУЖКА ПО ТЕМЕ «ПРЕДЕЛЫ»

Т. Ю. ОРЛОВА

Белорусско-Российский университет Могилев, Беларусь

Для работы со студентами, интересующимися математикой, в Белорусско-Российском университете организован математический кружок.

Ранее были рассмотрены системы упражнений для математического кружка по темам «Матрицы» [1], «Производная» [2], «Интегрирование» [3], «Векторы» [4]. Продолжая тему работы математического кружка, приведу подборку задач по теме «Пределы».

1. Найти
$$\lim_{x\to 0} \frac{x - f_1(g_1(f_2(g_2(x))))}{x^3}$$
, если $f_1(x) = x - x^2$; $f_2(x) = x + x^2$;

 $g_1(x) = x - x^3$; $g_2(x) = x + x^3$. (Internet Mathematics Olympiad for Students, университет Ариель, Израиль.)

Рассмотрим функции

$$f_2(g_2(x)) = g_2 + g_2^2 = x + x^3 + (x + x^3)^2 = x + x^3 + x^2 + o(x^3),$$

где
$$\lim_{x\to 0} \frac{o(x^3)}{x^3} = 0.$$

Аналогично получаем
$$g_1(f_2) = f_2 - f_2^3 = x + x^2 + o(x^3)$$
, $f_1(g_1) = g_1 - g_1^2 = x - 2x^3 + o(x^3)$.