УДК 621.372.8:535 РЕФЛЕКТОМЕТРИЯ СЛОЯ ОГРАНИЧЕННЫМ СВЕТОВЫМ ПУЧКОМ

С. О. ПАРАШКОВ¹, Е. А. ЧУДАКОВ², А. Б. СОТСКИЙ² ¹Белорусско-Российский университет ²Могилевский государственный университет имени А. А. Кулешова Могилев, Беларусь

Рефлектометрия слоя на подложке заключается в обработке угловой зависимости энергетического коэффициента отражения лазерного пучка с целью определения толщины d и комплексной диэлектрической проницаемости $\varepsilon = (n - ik)^2$ слоя. Известные работы по этой теме основываются на модели, в которой пучок заменяется плоской волной, а подложка считается неограниченной. Но при исследовании реальных слоев на плоскопараллельных подложках такой подход может приводить к существенным погрешностям при решении обратной оптической задачи. С целью их устранения в докладе рассматривается более общая модель рефлектометрии слоя, в которой учитывается пространственная ограниченность лазерного пучка и конечная толщина подложки.

На рис. 1, *а* представлены распределения нормированных на мощность падающего пучка P_0 интенсивностей S(y) отраженных лазерных пучков вдоль линии, образованной пересечением плоскости падения пучка и плоскости матрицы фотоприемников *F*. Пучок считается гауссовым, сфокусированным на поверхность слоя и имеющим амплитудный радиус *w*. Расчеты выполнены на основании строгого решения векторной электродинамической задачи об отражении когерентного светового пучка от слоистой среды. Графики соответствуют возбуждению слоя ZnO: Al c d = 0,355 мкм, $\varepsilon = (1,92 - i0,002)^2$, расположенного на плоскопараллельной стеклянной подложке с толщиной D = 2,14 мм и диэлектрической проницаемостью $\varepsilon_s = (1,514 - i6 \cdot 10^{-8})^2$, пучками с длиной волны $\lambda = 0,6328$ мкм, падающими под углом θ . Структура находится в воздухе. Расстояние от поверхности слоя до матрицы *F* вдоль оси пучка L = 5 см.

Сложные распределения S(y) на рис. 1 объясняются наложением полей пучков, отраженных как от слоя, так и от обратной стороны подложки (в рассмотренном диапазоне изменения *y* интерферируют пучки первого и второго порядков). На пучки второго и более высоких порядков может влиять ряд трудно контролируемых факторов, таких как клиновидность подложки, конечная длина когерентности света и т. д. Поэтому их целесообразно исключать диафрагмированием. В лучевом приближении необходимое для этого пространственное разделение пучков достигается в диапазоне углов падения

$$\arcsin(\alpha - \sqrt{\alpha^2 - p}) < \theta < \arcsin(\alpha + \sqrt{\alpha^2 - p}), \qquad (1)$$

Рис. 1. Распределения интенсивности света, детектируемые матрицей фотоприемников F(a), и коэффициенты ошибок восстановления параметров слоя в зависимости от углового диапазона измерений (δ)

На рис. 1 приемлемое разделение пучков первого и второго порядков достигается при w = 100 мкм. Но, согласно рис. 1, при уменьшении w проблема разделения пучков может осложняться их дифракционной расходимостью.

Возможный способ решения обратной задачи – минимизация функции

$$I(C, n, k, d) = \sum_{j=1}^{m} [\varphi(\theta_{j}) - C f(n, k, d, \theta_{j})]^{2},$$

где $\phi(\theta_j)$ – экспериментальные данные для относительной мощности отраженного пучка первого порядка; $f(n,k,d,\theta)$ – теоретическая модель; C – нормировочная постоянная.

Возникающие ошибки δn , δk , δd допускают оценки

$$\left|\delta n\right| \le \max \left|\delta \varphi(\Theta_j)\right| E_n; \quad \left|\delta k\right| \le \max \left|\delta \varphi(\Theta_j)\right| E_k; \quad \left|\delta d\right| \le \max \left|\delta \varphi(\Theta_j)\right| E_d,$$

где E_n , E_k , E_d – коэффициенты, вычисляемые через матрицу ошибок метода наименьших квадратов.

Зависимость коэффициентов E_n , E_k , E_d от углового диапазона $\Delta \theta$ измерения функции $\phi(\theta)$, ограниченного условием (1), представлена на рис. 1, δ . Расчет выполнен для эквидистантных θ_j в интервале $|\theta - \theta_0| \leq \Delta \theta$ с шагом 0,1° при $\theta_0 = 50^\circ$, w = 100 мкм.

В соответствии с рис. 1, *б* в целом предпочтительнее использование пучков ТЕ-поляризации.

Работа выполнена в рамках Государственной программы научных исследований РБ «1.15 Фотоника и электроника для инноваций».

где $\alpha = 0,5(1 + p\varepsilon_a / \varepsilon); \quad p = [w\varepsilon / (\varepsilon_a D)]^2 < (\varepsilon / \varepsilon_a)^2 [2 - \varepsilon_a / \varepsilon - 2\sqrt{1 - \varepsilon_a / \varepsilon}].$