УДК 517.958; 537.8

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЗАДАЧИ ЭКРАНИРОВАНИЯ ИМПУЛЬСНЫХ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ НАМАГНИЧЕННЫМИ ЭКРАНАМИ ИЗ ПЕРМАЛЛОЯ

В. Т. ЕРОФЕЕНКО¹, Г. Ф. ГРОМЫКО², Г. М. ЗАЯЦ² ¹Белорусский государственный университет ²Институт математики НАН Беларуси Минск, Беларусь

1. Физико-математическая модель экранирования импульсных электромагнитных полей намагниченным экраном из пермаллоя.

В пространстве E^3 расположен плоский экран $D(0 < z < \Delta)$ из пермаллоя [1], ограниченный плоскостями $\Gamma_1(z=0)$, $\Gamma_2(z=\Delta)$. Предполагается, что в начальный момент времени экран намагничен. Из полупространства $D_1(z<0)$ на слой D воздействует импульсное первичное электромагнитное поле \mathbf{E}_0 , \mathbf{H}_0 с временем длительности 2τ . В области D_1 образуется отражённое поле \mathbf{E}_1' , \mathbf{H}_1' и суммарное поле $\mathbf{E}_1 = \mathbf{E}_0 + \mathbf{E}_1'$, $\mathbf{H}_1 = \mathbf{H}_0 + \mathbf{H}_1'$. В полупространство $D_2(z > \Delta)$ проникает поле \mathbf{E}_2 , \mathbf{H}_2 . В слое D из пермаллоя образуется электромагнитное поле \mathbf{E} , \mathbf{H} и поле намагниченности \mathbf{M} . Поле в пермаллое подчиняется уравнениям Максвелла

$$\operatorname{rot} \mathbf{E} = -\mu_0 \frac{\partial}{\partial t} (\mathbf{H} + \mathbf{M}), \quad \operatorname{rot} \vec{\mathbf{H}} = \dot{\sigma} \vec{\mathbf{E}}, \quad \frac{\partial}{\partial t} \mathbf{M} = \dot{\gamma} \mathbf{M} \times (\mathbf{H} + \dot{a} \Delta \mathbf{M} - \dot{g} \mathbf{M} \times \mathbf{H}), \quad (1)$$

где $\dot{\sigma}$ – проводимость пермаллоя, $\dot{\gamma}$, \dot{a} , \dot{g} – постоянные.

2. Начально-краевая задача экранирования.

Для построения математической модели задачи использованы аналитические методы [2]. Уравнения (1) преобразованы в физически безразмерные уравнения [3]. Получена начально-краевая задача для функций $u_1(\bar{z},\bar{t}),\ u_2(\bar{z},\bar{t}),\ u_3(\bar{z},\bar{t}),\$ определяющих компоненты магнитного поля в области $0 \le \bar{z} \le 1$, и функций $v_1(\bar{z},\bar{t}),\ v_2(\bar{z},\bar{t}),\ v_3(\bar{z},\bar{t}),\$ определяющих компоненты поля намагниченности пермаллоя.

Требуется решить систему:

а) уравнения

$$\frac{\partial u_{j}(\bar{z},\bar{t})}{\partial \bar{t}} = G \frac{\partial^{2} u_{j}(\bar{z},\bar{t})}{\partial \bar{z}^{2}} - p_{j}(\bar{z},\bar{t}), \quad j = 1,2, \quad 0 < \bar{z} < 1, \quad 0 < \bar{t} \le 3;$$

с граничными условиями

$$\left. \left(\frac{\partial u_1(\bar{z},\bar{t})}{\partial \bar{z}} - K_0 u_1(\bar{z},\bar{t}) \right) \right|_{\bar{z}=0} = -2K_0 b(\bar{t}), \quad \left(\frac{\partial u_2(\bar{z},\bar{t})}{\partial \bar{z}} - K_0 u_2(\bar{z},\bar{t}) \right) \Big|_{\bar{z}=0} = 0, \quad 0 < \bar{t} \le 3;$$

$$\left. \left(\frac{\partial u_1(\overline{z}, \overline{t})}{\partial \overline{z}} + K_0 u_1(\overline{z}, \overline{t}) \right) \right|_{\overline{z}=1} = 0, \quad \left(\frac{\partial u_2(\overline{z}, \overline{t})}{\partial \overline{z}} + K_0 u_2(\overline{z}, \overline{t}) \right) \Big|_{\overline{z}=1} = 0, \quad 0 < \overline{t} \le 3$$

и начальными условиями $u_1(\bar{z},\bar{t})|_{\bar{t}=0}=0, u_2(\bar{z},\bar{t})|_{\bar{t}=0}=0, 0 \le \bar{z} \le 1;$

б) задачу Коши

$$\frac{\partial u_3(\bar{z},\bar{t})}{\partial \bar{t}} = -p_3(\bar{z},\bar{t}), \qquad 0 < \bar{z} < 1, \quad 0 < \bar{t} \le 3;$$

с начальным условием $u_3(\bar{z},\bar{t})|_{\bar{t}=0}=0, 0 \le \bar{z} \le 1$ и граничными условиями $u_3(\bar{z},\bar{t})|_{\bar{z}=0} = 0, \quad u_3(\bar{z},\bar{t})|_{\bar{z}=1} = 0, \quad 0 < \bar{t} \le 3;$

в) уравнения

$$\frac{\partial v_j(\overline{z},\overline{t})}{\partial \overline{t}} = p_j(\overline{z},\overline{t}), \quad j = 1,2,3, \quad 0 < \overline{z} < 1, \quad 0 < \overline{t} \le 3;$$

с граничными условиями

маничными условиями
$$\frac{\partial v_1(\overline{z}, \overline{t})}{\partial \overline{z}} \bigg|_{\overline{z}=0, \overline{z}=1} = 0, \quad \frac{\partial v_2(\overline{z}, \overline{t})}{\partial \overline{z}} \bigg|_{\overline{z}=0, \overline{z}=1} = 0, \quad v_3(\overline{z}, \overline{t}) \bigg|_{\overline{z}=0, \overline{z}=1} = 0, \quad 0 < \overline{t} \le 3,$$

и начальными условиями

$$\begin{aligned} v_1\big(\overline{z},\overline{t}\,\big)\big|_{\overline{t}=0} &= 0, \quad v_2\big(\overline{z},\overline{t}\,\big)\big|_{\overline{t}=0} &= 0, \quad v_z(\overline{z},\overline{t})\big|_{\overline{t}=0} &= 16H_{\mathrm{s}}\overline{z}^{\,2}(1-\overline{z})^{\,2}\,, \qquad 0 \leq \overline{z} \leq 1, \\ \text{где } b\big(\overline{t}\,\big) - \text{импульсная функция первичного поля; функции } p_1\big(\overline{z},\overline{t}\,\big), \quad p_2\big(\overline{z},\overline{t}\,\big), \end{aligned}$$

$$p_3(\bar{z},\bar{t})$$
 определены в [3]; $G = \frac{\tau}{\dot{\sigma}\mu_0 \Delta^2}; \quad K_0 = \dot{\sigma} Z_0 \Delta; \quad F_1 = \frac{\dot{\gamma}\tau \dot{a}H_0}{\Delta^2}; \quad F_2 = \dot{\gamma}\tau H_0;$

 $F_3 = \dot{\gamma} \tau \, \dot{g} H_0^2; \ H_{\rm s} = H_{\rm sm} \, / \, H_0 \, , \ H_{\rm sm} - \$ намагниченность экрана, H_0 — напряженность первичного поля.

3. Коэффициент эффективности экранирования.

Для оценки экранирующих свойств экрана из пермаллоя используется коэффициент $\mathcal{G} = \max_{0 \leq t < \infty} \left| \vec{E}_0 \left(0, t \right) \right| / \max_{0 \leq t < \infty} \left| \vec{E}_2 \left(\Delta, t \right) \right|.$

Начально-краевая задача решается численным методом. Для численного эксперимента были выбраны параметры [3]. Численные эксперименты показывают зависимость коэффициента экранирования от начальной намагниченности экрана $H_{\rm sm}$.

Работа выполнена при финансовой поддержке БРФФИ, договор № Φ 22-106.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Закономерности проникновения электромагнитных волн через металлические магнитные пленки / А. Б. Ринкевич [и др.] // Журн. техн. физики. – 2009. – Т. 79, вып. 9. – С. 96–106.
- 2. Ерофеенко, В. Т. Аналитическое моделирование в электродинамике / В. Т. Ерофеенко, И. С. Козловская. – Москва: Либроком, 2014. – 304 с.
- 3. Ерофеенко, В. Т. Численное моделирование задач экранирования импульсных электромагнитных полей экранами из пермаллоя / В. Т. Ерофеенко, Г. Ф. Громыко, Г. М. Заяц // Дифференциальные уравнения. – 2021. – Т. 57, № 12. – С. 1682–1697.