УДК 621.926

АНАЛИЗ СИЛОВОГО ВЗАИМОДЕЙСТВИЯ РАБОЧИХ ЩЕТКОПОДОБНЫХ ЗВЕНЬЕВ С ИЗМЕЛЬЧАЕМОЙ ЧАСТИЦЕЙ

О. И НАЛИВКО¹, Л. А. СИВАЧЕНКО²

¹Барановичский государственный университет Барановичи, Беларусь
²Белорусско-Российский университет Могилев, Беларусь

Сосредоточим внимание на частной конструкции машины с рабочими звеньями, поверхности которых изготовлены в виде щеткоподобных звеньев. Фрагмент принципиальной схемы такой машины показан на рис. 1.

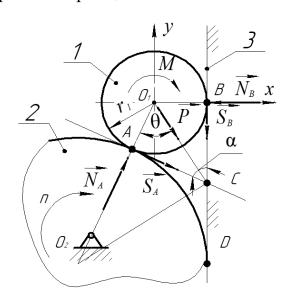


Рис. 1. Схема сил взаимодействия рабочих звеньев машины с измельчаемой частицей

Движение частички во время вхождения в контакт со звеньями 2, 3 будем считать равномерным. Это позволяет игнорировать силы инерции и определить силы взаимодействия со звеньями 2, 3 из условий равновесия.

Реакции связей обозначим как N_A , S_A , N_B , S_B и приложим их к частице I. Такие же силы противоположного направления действуют на звенья 2, 3. К активным силам относятся сила тяжести частички и силы давления материала, находящегося в пространстве над частичкой. Активные силы определяются отдельно и в нашей задаче считаются заданными, которые представлены равнодейст-

вующей силой P и парой сил с моментом M.

Заметим, что частичка 1 при повороте щетки 2 может втягиваться в зону разрушения, а может и оставаться неподвижной. Движение частицы в зону разрушения зависит от угла захвата $\alpha = 2 \operatorname{arctg}(\sqrt{\rho})$, где $\rho = r_1 / r_2$.

Вводим систему осей координат $O_1 xy$. Учитывая, что $S_A = f N_A$, из условий равновесия определяем следующее:

$$P_B N_A - N_B + P \sin \theta = 0; (1)$$

$$P_C N_A - S_B + P \cos \theta = 0; (2)$$

$$fr_1N_A - S_Br_1 - M = 0.$$
 (3)

Из уравнения (3) получаем $S_B = f N_A - M / r_1$, подставляя в уравнение (2)

$$fN_A - P\cos\theta + M/r_1 = 0.$$

Преобразуем в формулу

$$N_A = Q / P_A . (4)$$

Подставляем N_A в формулы (1)–(3), определяем следующее:

$$N_B = (P_B / P_A)Q + P\sin\theta; (5)$$

$$S_B = (P_C / P_A)Q + P\cos\theta; \tag{6}$$

$$S_A = f(Q/P_A). \tag{7}$$

Используя формулы (1)–(7), получаем

$$P_A = \sin\alpha - (1 + \cos\alpha)f; P_B = \cos\alpha + f\sin\alpha;$$

$$P_C = \sin\alpha - f\cos\alpha; Q = P\cos\theta - M/r_1.$$
(8)

Представим силы взаимодействия (5)—(7) в виде функции радиуса частицы r_1 , используя параметр угла захвата $tg(\alpha/2)$.

Используем зависимость

$$t = \operatorname{tg}(\alpha/2) = \sqrt{(1-\cos\alpha)/(1+\cos\alpha)} = \sin\alpha/(1+\cos\alpha).$$

Преобразуя её, получим $\sin\alpha = 2t / (1 + t^2)$; $\cos\alpha = (1 - t^2) / (1 - t^2)$. Формулы (8) примут вид:

$$P_A = 2(t-f)/(1+t^2)$$
; $P_B = (1+2ft-t^2)/(1+t^2)$; $P_C = [2t-f(1-t^2)]/(1+t^2)$.

Величины P_A , P_B , P_C , а значит, и силы взаимодействия (4)–(7) можно рассматривать как функции соотношения ρ , а при $r_2 = \text{const} - \text{как}$ функции радиуса частички r_1 . Заметим, что компоненты сил взаимодействия, приложенные в пунктах A, B, по-разному влияют на разрушение частички. Касательные к ее поверхности силы S_A , S_B вызывают преимущественно истирание, нормальные N_A , N_B — измельчение.

Рассмотрим частный случай, при котором внешние силы, приложенные к частичке, приводятся к равнодействующей Q = P (M = 0). Примем $\theta = 0$, тогда формулы (4) и (5) примут вид:

$$N_A = P / P_A; N_B = (P_B / P_A)P.$$
 (9)

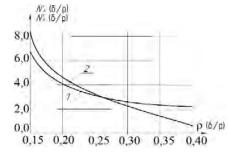


Рис. 2. Изменение нормальных сил взаимодействия: 1 — сила N'_A ; 2 — сила N'_B

Изменение сил (9) в зависимости от радиуса r_1 при внешнем воздействии P представлено на рис. 2. Приведены графики на интервале $r_1 = (0,1...04)r_2$ при f = 0,3 в безразмерных кооординатах $N_A = N_A/P$; $N_B' = N_B/P$. Исходя из них, равновесие относительно большей частички обеспечивается меньшими нормальными силами. Такой результат можно обосновать присутствием клинового эффекта.