УДК 621.83.06

ПРИМЕНЕНИЕ ПРИНЦИПОВ ПРОГНОЗИРОВАНИЯ В УПРАВЛЕНИИ ЭЛЕКТРОПРИВОДАМИ

А. Р. ОКОЛОВ

Учреждение образования «БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

Возрастающий уровень требований к производительности промышленных механизмов и точности отработки перемещений ставят задачу совершенствования принципов построения систем управления электроприводами. При этом усложняется математическая модель объекта управления, и, соответственно, структура управляющего устройства и системы электропривода в целом.

Синтез системы управления сложным нелинейным дискретным объектом, каким является вентильный электропривод, можно осуществить используя метод, основанный на принципе симметрии структуры системы и обращении операций с реализацией оптимальных траекторий движения. Синтез системы электропривода приводит к необходимости реализации в управляющем устройстве операции прогнозирования необходимого процесса управления.

Операция прогнозирования может быть реализована как за счет введения на вход системы соответствующего формирователя, так и за счет использования прогнозирующей модели, работающей в ускоренном масштабе времени.

При синтезе быстродействующих систем электропривода с управлением по интервалам дискретности необходимо решать две основные взаимосвязанные между собой задачи:

- определять в течение текущего интервала оптимальное, с учетом предельных возможностей и ограничений накладываемых на электропривод, значение регулируемой координаты на будущем интервале $e_{3a\partial\ onm}$;
- в соответствии с заданием $e_{3a\partial\ onm}$, возмущением I_cR , и текущими значениями координат с наибольшей точностью формировать к концу текущего интервала дискретности составляющие, определяющие требуемый закон управления и соответствующие вольт-секундным площадкам координат электропривода на прогнозируемом (n+1) интервале.

При произвольном законе задания регулируемой координаты режиме больших отклонений для реализации операции прогнозирования на вход системы должен быть введен формирователь, ограничивающий e_{3ao} в функции предельных возможностей электропривода и текущих значениях координат. Это позволит осуществить ограничения тока IR_{max} , ускорения

 $I_{\partial}R_{max}$, производной тока, $(\frac{dIR}{dt})_{max}$ и реализовать предельные возможности электропривода:

$$e_{3a\partial\ onm} = e_{3a\partial}$$
, если $e_{kn} + \Delta e_{max} > e_{3a\partial}$; $e_{3a\partial\ onm} = e_{kn} + \Delta e_{max}$, если $e_{kn} + \Delta e_{max} < e_{3a\partial}$; $\Delta e_{max} = f(e, I_c R, min(IR_{max}, I_\partial R_{max}, (\frac{dIR}{dt})_{max}))$.

В соответствии с заданием $e_{3a\partial \text{ опт}}$, возмущением I_cR , текущими значениями координат электропривода и согласно выражению

$$e_{3a\partial \text{ OHT}} - e_{kn} = \frac{1}{T_M} \int_0^{\tau n+1} I \partial R dt$$
,

где τ_{n+1} — длительность n+1 прогнозируемого интервала дискретности преобразователя, с той или иной степенью точности могут быть определены составляющие требуемого закона управления.

При использовании прогнозирующей модели достигается эффект «ускоренного» времени за счет введения в уравнения модели электропривода масштабных коэффициентов времени. Появляется возможность оценки поведения объекта управления на всем временном интервале, предшествующем достижению заданной точки фазового пространства. В конце каждого такта моделирования в соответствии с его результатом вырабатывается необходимое управление, переводящее объект управления в заданную точку фазовой траектории в соответствии с требуемой целью управления. Вследствие высокой частоты моделирования и формирования управления возможно использование упрощенной модели электропривода.

Разработаны варианты прогнозирующих моделей для линейной и релейной систем управления электроприводами. Исследования, выполненные для больших, средних и малых перемещений при ускорениях, равных и отличных от заданного, показали высокую эффективность предложенного позиционного электропривода с прогнозирующей моделью, в котором обеспечивается точность прогнозирования 0,01...0,05 мм.