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Теорема 5 [5]. Если выполнено одно из условий

lim
𝑡→+∞

+∞∫︁
𝑡

𝑡∫︁
0

𝑑𝜏𝑟(𝑠, 𝜏) 𝑑𝑠 > 1, lim
𝑡→+∞

+∞∫︁
𝑡

𝑡∫︁
0

𝑑𝜏𝑟(𝑠, 𝜏) 𝑑𝑠 > 1/𝑒,

то все решения уравнения (3) устойчивого типа осциллируют.
Работа выполнена при финансовой поддержке при поддержке Минобрнауки РФ (гос-

задание FSNM-2023-0005).
Литература

1. Мышкис А. Д. О решениях линейных однородных дифференциальных уравнений первого порядка
устойчивого типа с запаздывающим аргументом // Матем. сб. 1951. Т. 70. № 3. С. 641–658.

2. Коплатадзе Р. Г., Чантурия Т. А. О колеблющихся и монотонных решениях дифференциальных
уравнений первого порядка с отклоняющимся аргументом // Дифференц. уравн. 1982. Т. 18. № 8.
С. 1463–1465.

3. Chudinov K. Note on oscillation conditions for first-order delay differential equations // Electron J.
Qual. Theory Differ. Eq. 2016. № 2. 10 с.

4. Чудинов К. М. Об условиях осцилляции решений дифференциальных уравнений с последействием
и обобщении теоремы Коплатадзе — Чантурия // Сиб. матем. журн. 2020. Т. 61. № 1. С. 224–233.

5. Chudinov K. M. The Koplatadze–Chanturiya type theorem for linear first-order delay differential
equation of general form // Mem. Differential Equations Math. Phys. 2022. Т. 87. С. 53–62.

ON ASYMPTOTIC EQUIVALENCE OF HIGHER-ORDER QUASILINEAR
DIFFERENTIAL EQUATIONS

I. V. Astashova

We study the problem of asymptotic equivalence of the equations

𝑦(𝑛)(𝑥) +
𝑛−1∑︁
𝑗=0

𝑎𝑗(𝑥)𝑦
(𝑗)(𝑥) + 𝑝(𝑥) |𝑦(𝑥)|𝑘 sgn 𝑦(𝑥) = 𝑓(𝑥) (1)

and

𝑧(𝑛)(𝑥) +
𝑛−1∑︁
𝑗=0

𝑎𝑗(𝑥)𝑦
(𝑗)(𝑥) + 𝑝(𝑥) |𝑧(𝑥)|𝑘 sgn 𝑧(𝑥) = 0 (2)

with 𝑛 ≥ 2, 𝑘 > 1, and continuous functions 𝑝(𝑥) , 𝑓(𝑥) and 𝑎𝑗(𝑥) . Equation (2) is a
so-called Emden–Fowler type differential equation. It was considered from different points
of view (see for example [1, 2] and the bibliography there). In particular, the asymptotic
behavior of its solutions vanishing at infinity is described. (See also [3–6].) So, if an asymptotic
equivalence of equations (1) and (2) exists, it is possible to describe the asymptotic behavior
of vanishing at infinity solutions to equation (1), too. Previous results are formulated in [7–10].
The asymptotic equivalence of ordinary differential equations and their systems can be useful
to investigate some problems for partial differential equations (see, for example, [11]). Note
that the notion of asymptotic equivalence can be used in different senses (cf.[10, 12–19]).

Hereafter we denote |𝑦|𝑘 sgn 𝑦 by [𝑦]𝑘± .
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Theorem 1.Let 𝑎0, . . . , 𝑎𝑛−1 , 𝑓 , 𝑔 , and 𝑝 be continuous functions defined in a
neighborhood of ∞. Suppose that 𝑝 , 𝑓 , and 𝑔 are bounded while 𝑎0, . . . , 𝑎𝑛−1 satisfy the
inequalities

∞∫︁
𝑥0

𝑥𝑛−𝑗−1|𝑎𝑗(𝑥)| 𝑑𝑥 <∞, 𝑗 ∈ {0, . . . , 𝑛− 1}. (3)

If 𝑦 is a solution to the equation

𝑦(𝑛)(𝑥) +
𝑛−1∑︁
𝑗=0

𝑎𝑗(𝑥)𝑦
(𝑗) + 𝑝(𝑥)[𝑦(𝑥)]𝑘± = 𝑓(𝑥) 𝑒−𝛾𝑥 (4)

with 𝑛 ≥ 2, 𝑘 > 1, 𝛾 > 0 and 𝑦(𝑥) → 0 as 𝑥 → +∞, then there exists a unique solution
𝑧 to the equation

𝑧(𝑛)(𝑥) +
𝑛−1∑︁
𝑗=0

𝑎𝑗(𝑥)𝑧
(𝑗)(𝑥) + 𝑝(𝑥)[𝑧(𝑥)]𝑘± = 𝑔(𝑥) 𝑒−𝛾𝑥 (5)

such that |𝑧(𝑥)− 𝑦(𝑥)| = 𝑂(𝑒−𝛾𝑥) as 𝑥→ +∞.
To prove this theorem we need the following lemmas.
Lemma 1.Any linear differential operator

𝐿 : 𝑦 ↦→ 𝑦(𝑛) +
𝑛−1∑︁
𝑗=0

𝑎𝑗𝑦
(𝑗) (6)

with all continuous functions 𝑎𝑗(𝑥) satisfying (3) can be represented in a neighbourhood of
+∞ as the composition operator

𝐿 = 𝐷𝑏 = 𝑏0𝐵1 ∘ · · · ∘𝐵𝑛,

where 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛) , all 𝐵𝑗, 𝑗 = 1, . . . , 𝑛, are the first-order operators 𝑢 ↦→ (𝑏𝑗𝑢)
′ and

each 𝑏𝑗, 𝑗 = 0, . . . , 𝑛, is a C𝑗 function satisfying at infinity the following conditions:
(i) 𝑏𝑗(𝑥) → 1 ,
(ii) 𝑥𝑖𝑏

(𝑖)
𝑗 (𝑥) → 0 for all 𝑖 ∈ {1, . . . , 𝑗 − 1} ,

(iii) → 𝑥0𝑥
𝑖−1
⃒⃒⃒
𝑏
(𝑖)
𝑗 (𝑥)

⃒⃒⃒
𝑑𝑥 <∞ for all 𝑖 ∈ {1, . . . , 𝑗} and some 𝑥0 ∈ R .

Now, for 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛) and 𝑗 ∈ {0, . . . , 𝑛} put

𝑏− 𝑗 = (𝑏𝑗, . . . , 𝑏𝑛).

Note that if a tuple 𝑏 satisfies the conditions from Lemma 1, then so does the tuple 𝑏− 𝑗 .
Lemma 2.Let 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛) satisfy the conditions from Lemma 1. If a function 𝑦

satisfies at infinity both 𝑦 → 0 and 𝐷𝑏(𝑦) → 0 , then the same is true for all functions
𝐷𝑏−𝑗(𝑦), 0 < 𝑗 < 𝑛.

Lemma 3.Suppose a tuple 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛) satisfies the conditions from Lemma 1 and
a function 𝑦 satisfies, on a segment 𝐼 of length Δ , the inequality |𝐷𝑏−𝑗(𝑦)| ≥ 𝑊 with some
𝑗 ∈ {1, . . . , 𝑛} and a constant 𝑊 > 0 . Then there exists a segment 𝐼 ′ ⊂ 𝐼 of length 4𝑗−𝑛Δ

with |𝑦(𝑥)| ≥ (2𝑗−𝑛 𝛽)
𝑛+1−𝑗

𝑊Δ𝑛−𝑗 for all 𝑥 ∈ 𝐼 ′ .
Now we can formulate the following
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Corollary.Under the conditions of Theorem 1, a function 𝑦 is a solution to equation (4)
tending to zero as 𝑥→ +∞ if and only if

𝑏𝑛𝑦 = (𝐽𝑛−1 ∘ · · · ∘ 𝐽0)
[︁
𝑒−𝛾𝑥𝑓(𝑥)− 𝑝(𝑥)[𝑦(𝑥)]𝑘±

]︁
, (7)

where the operators 𝐽𝑗 take each sufficiently rapidly decreasing continuous function 𝜙 to the
vanishing at infinity primitive function of 𝜙/𝑏𝑗 :

𝐽𝑗[𝜙](𝑥) = −
∞∫︁
𝑥

𝜙(𝜉)

𝑏𝑗(𝜉)
𝑑𝜉.

From Theorem 1 we can obtain
Theorem 2.Suppose that the function 𝑓(𝑥) in equation (1) is continuous and satisfies

the condition
|𝑓(𝑥)| ≤ 𝐶𝑒−𝛾𝑥, 𝐶 > 0, 𝛾 > 0, (8)

all 𝑎0, . . . , 𝑎𝑛−1 are continuous functions satisfying (3), and 𝑝(𝑥) is a bounded continuous
function.

Then for any solution 𝑦(𝑥) to equation (1) tending to zero as 𝑥 → ∞ , there exists a
solution 𝑧(𝑥) to equation (2) such that

|𝑦(𝑥)− 𝑧(𝑥)| = 𝑂(𝑒−𝛾𝑥), 𝑥→ ∞. (9)

Similarly, for any solution 𝑧(𝑥) to equation (2) tending to zero as 𝑥→ ∞, there exists a
solution 𝑦(𝑥) to equation (1) satisfying (9).

Remark.Note that a similar result is true for equation (1) with a power-law small right-
hand side. (For the case 𝑎𝑗 = 0 see[9].)

The work is partially supported by RSF (Project 20-11-20272).
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A FORMULA FOR THE CENTRAL EXPONENT OF DISCRETE
TIME-VARYING SYSTEMS

Adam Czornik and Micha l Niezabitowski

Since the famous work of A.M. Lyapunov [1], Lyapunov exponents entered the canon of
dynamical systems theory and are, along with other numerical characteristics such as Bohl or
Perron exponents, commonly used tools to describe properties of dynamical systems. One of
the problems with numerical calculation of Lyapunov exponents of linear systems with variable
coefficients is their discontinuity as a function of coefficients of the system. This property was
already noticed by O. Perron in [2]. For this reason, many works in the literature concern
the description of possible changes in the Lyapunov exponents under the influence of various
kinds of parametric perturbations. A summary of this work for continuous-time systems can be
found in the monograph [3], and for discrete-time systems in the monograph [4]. In particular,
it was shown that the maximum upward shift of the largest Lyapunov exponent is described
by the so-called central exponent (see [5]) and Theorem 1 below). The significance of this
exponent for the theory of stability lies in the fact that its negativity implies, inter alia, the
exponential stability of the perturbed system for all parametric perturbation tending to zero.
However, this exponent is expressed by the transition matrix of the unperturbed system and
therefore, in general, it is difficult to compute. Additionally, the central exponent itself is
generally not a continuous function of the coefficients but only a semi-continuous function
from above (see Chapter 4 in [3]).

On the other hand, for time-invariant systems, a comprehensive description of the dynamic
properties can be obtained through the spectrum of the system matrix. This brings to mind an
attempt to express the numerical characteristics of systems with variable coefficients through
the eigenvalues of the matrix of coefficients. In the general case, it is unfortunately impossible,
because there are examples of exponentially uniformly stable continuous systems, whose
coefficient matrices have spectra lying in the right half-plane, as well as examples of unstable
systems with coefficient matrices with only eigenvalues with a negative real part (see e.g. [6]




