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A FORMULA FOR THE CENTRAL EXPONENT OF DISCRETE
TIME-VARYING SYSTEMS

Adam Czornik and Micha l Niezabitowski

Since the famous work of A.M. Lyapunov [1], Lyapunov exponents entered the canon of
dynamical systems theory and are, along with other numerical characteristics such as Bohl or
Perron exponents, commonly used tools to describe properties of dynamical systems. One of
the problems with numerical calculation of Lyapunov exponents of linear systems with variable
coefficients is their discontinuity as a function of coefficients of the system. This property was
already noticed by O. Perron in [2]. For this reason, many works in the literature concern
the description of possible changes in the Lyapunov exponents under the influence of various
kinds of parametric perturbations. A summary of this work for continuous-time systems can be
found in the monograph [3], and for discrete-time systems in the monograph [4]. In particular,
it was shown that the maximum upward shift of the largest Lyapunov exponent is described
by the so-called central exponent (see [5]) and Theorem 1 below). The significance of this
exponent for the theory of stability lies in the fact that its negativity implies, inter alia, the
exponential stability of the perturbed system for all parametric perturbation tending to zero.
However, this exponent is expressed by the transition matrix of the unperturbed system and
therefore, in general, it is difficult to compute. Additionally, the central exponent itself is
generally not a continuous function of the coefficients but only a semi-continuous function
from above (see Chapter 4 in [3]).

On the other hand, for time-invariant systems, a comprehensive description of the dynamic
properties can be obtained through the spectrum of the system matrix. This brings to mind an
attempt to express the numerical characteristics of systems with variable coefficients through
the eigenvalues of the matrix of coefficients. In the general case, it is unfortunately impossible,
because there are examples of exponentially uniformly stable continuous systems, whose
coefficient matrices have spectra lying in the right half-plane, as well as examples of unstable
systems with coefficient matrices with only eigenvalues with a negative real part (see e.g. [6]
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p. 257). There are also analogous examples for discrete systems. It turns out, however, that
if the coefficients of the system change slowly enough, then from the location of the spectra
of the coefficient matrix, certain properties concerning the asymptotic properties of solutions
can be deduced. This is the basic idea behind the so-called ’freezing method’ initiated by
Desoer’s work [7]. A summary of the results obtained using this technique can be found in
Section 10.1 of [8].

In this work we deal with the relationship between the largest in absolute value
eigenvalues of the coefficient matrix and central exponent of a discrete time-varying system.
The main result of the work states that for systems with slowly varying coefficients (see
Definition 1) the central exponent is the upper limit of arithmetic-mean of the logarithms
of the largest module of eigenvalues of the coefficient matrix. Systems with slowly varying
coefficients have been recently considered in [9] where formulae for the largest and smallest
Bohl exponents were obtained. The work also contains a numerical example illustrating the
obtained result.

Let ‖𝑥‖ be the Euclidean norm of 𝑥 ∈ R𝑑 and ‖𝐶‖ be the operator norm induced by
Euclidean norm of a matrix 𝐶 ∈ R𝑑×𝑑. A Lyapunov sequence is a sequence 𝐶 = (𝐶(𝑛))𝑛∈N
of invertible square matrices such that

max{‖𝐶‖∞, ‖𝐶−1‖∞} <∞,

where ‖𝐶‖∞ := sup𝑛∈N ‖𝐶(𝑛)‖ .
We will consider systems of the following form

𝑥(𝑛+ 1) = 𝐴(𝑛)𝑥(𝑛), 𝑛 ∈ N, (1)

where 𝐴 = (𝐴(𝑛))𝑛∈N is a Lyapunov sequence. Let us denote by (Φ𝐴 (𝑛,𝑚))𝑛,𝑚∈N the
transition matrix of system (1).

Definition 1. The Lyapunov exponent 𝜆𝐴 of system (1) is defined as follows

𝜆𝐴 = lim sup
𝑛→∞

1

𝑛
ln ‖Φ𝐴(𝑛, 0)‖ .

Consider now a perturbed system

𝑧(𝑛+ 1) = (𝐴(𝑛) +𝑄(𝑛)) 𝑧(𝑛), 𝑛 ∈ N, (2)

where the perturbation 𝑄 = (𝑄(𝑛))𝑛∈N is a bounded sequence of 𝑑 by 𝑑 matrices such
that 𝐴+𝑄 = (𝐴(𝑛) +𝑄(𝑛))𝑛∈N is a Lyapunov sequence. It is clear that for each Lyapunov
sequence 𝐴 there exists a 𝛿𝐴 > 0 such that 𝐴+𝑄 is a Lyapunov sequence for each 𝑄 such
that ‖𝑄‖∞ < 𝛿𝐴. Considering the perturbed system (2) we will always assume that 𝑄 is
such that ‖𝑄‖∞ < 𝛿𝐴.

Consider the following two quantities

Ω1(𝐴) = lim
𝑞→0+

(︃
sup

‖𝑄‖∞<𝑞

𝜆𝐴+𝑄

)︃
,

Ω2(𝐴) = sup
{︁
𝜆𝐴+𝑄 : lim

𝑛→∞
𝑄(𝑛) = 0

}︁
.

The quantity Ω1(𝐴) introduced for continuous-time systems by R. E. Vinograd in articles
[10] and [11], in which he obtained an upper bound of Ω1(𝐴) in terms of the transition
Cauchy matrix of the system. V. M. Millionshchikov proved in paper [12] that the upper
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bound obtained by R. E. Vinograd is sharp. The problem of calculating Ω1(𝐴) and Ω2(𝐴)
for discrete-time systems was investigated in [5], where the following theorem has been proved.

Theorem 1. The following equality holds

Ω1(𝐴) = Ω2(𝐴) = Ω𝐶(𝐴),

where

Ω𝐶(𝐴) = lim
𝑁→∞

1

𝑁

(︃
lim sup
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑘=0

ln ‖Φ𝐴 (𝑘 +𝑁, 𝑘)‖

)︃
.

The number Ω𝐶(𝐴) is called the central exponent of system (1).
The main objective of this paper is to provide a formula for Ω𝐶(𝐴) in the terms of

eigenvalues of matrices 𝐴 (𝑛) under certain additional assumption about the sequence 𝐴. In
the next theorem 𝐶 ∈ R𝑑×𝑑, 𝜆 (𝐶) is the greatest absolute value of the eigenvalues of matrix
𝐶.

Theorem 2. If
lim
𝑛→∞

‖𝐴(𝑛+ 1)− 𝐴(𝑛)‖ = 0,

then

Ω𝐶(𝐴) = lim sup
𝑛→∞

1

𝑛

𝑛−1∑︁
𝑖=0

ln𝜆 (𝐴 (𝑖)) .
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