THE METHOD OF FIELD CHARACTERISTICS FOR AUTONOMOUS SYSTEMS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

D. S. Zhalukevich

Let us consider an autonomous system of the 2-nd order [1]:

$$
\begin{equation*}
\dot{x}=P(x, y), \quad \dot{y}=Q(x, y), \quad(x, y) \in G \subseteq \Re^{2} \tag{1}
\end{equation*}
$$

The matrix of the system (1) has the form

$$
A_{1}=\left(\begin{array}{cc}
P_{x} & P_{y} \tag{2}\\
Q_{x} & Q_{y}
\end{array}\right)
$$

the determinant of the matrix (3) will be equal to

$$
\begin{equation*}
J_{1}=\operatorname{det} A_{1}=P_{x} Q_{y}-P_{y} Q_{x} \tag{3}
\end{equation*}
$$

We introduce the notation

$$
\begin{equation*}
\vec{v}=\hat{T} \vec{r}, \quad \vec{a}=\hat{T} \vec{v}, \quad \vec{w}=\hat{T} \vec{a} \tag{4}
\end{equation*}
$$

where $\vec{r}=x \vec{i}+y \vec{j}, \hat{T}=\frac{d}{d t}=\vec{v} \cdot \nabla, \nabla=\frac{\partial}{\partial x} \vec{i}+\frac{\partial}{\partial y} \vec{j}$.
Differentiating the system (1) in time, we get the system

$$
\begin{equation*}
\ddot{x}=F_{1}(x, y, \dot{x}, \dot{y}), \quad \ddot{y}=F_{2}(x, y, \dot{x}, \dot{y}) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{1}=\dot{P}=\vec{v} \cdot \nabla P, \quad F_{2}=\dot{Q}=\vec{v} \cdot \nabla Q \tag{6}
\end{equation*}
$$

Differentiating the system (5) in time, we get the system

$$
\begin{equation*}
\dddot{x}=\Phi_{1}(x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}), \quad \dddot{y}=\Phi_{2}(x, y, \dot{x}, \dot{y}, \ddot{x}, \ddot{y}) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{1}=\dot{F}_{1}=\ddot{P}=\vec{a} \cdot \nabla P+\vec{v} \cdot \nabla F_{1}, \quad \Phi_{2}=\dot{F}_{2}=\ddot{Q}=\vec{a} \cdot \nabla Q+\vec{v} \cdot \nabla F_{2} \tag{8}
\end{equation*}
$$

The determinant of an arbitrary order can be written through Poisson brackets

$$
\begin{equation*}
J_{k}=\operatorname{det} A_{k}=-\left\{P^{(k-1)}, Q^{(k-1)}\right\} \tag{9}
\end{equation*}
$$

where

$$
P^{(0)}=P, \quad Q^{(0)}=Q, \quad P^{(k-1)}=\frac{d^{(k-1)} P}{d t^{(k-1)}}, \quad Q^{(k-1)}=\frac{d^{(k-1)} Q}{d t^{(k-1)}}, \quad k=\overline{1, n}
$$

Definition 1. The matrix of system (1) is called primary, system (5) secondary and system (7) tertiary.

Theorem 1. For a stationary plane field of the system (1), the connections between the primary, secondary and tertiary matrices have the form

$$
\begin{gather*}
A_{2}=A_{1}^{2}+\vec{v} \cdot \nabla A_{1} \tag{10}\\
A_{3}=A_{1} A_{2}+A_{2} A_{1}+\vec{v} \cdot \nabla A_{2}+\vec{a} \cdot \nabla A_{1} . \tag{11}
\end{gather*}
$$

It can be seen from (10) and (11) that at the equilibrium point $\vec{v}_{0}=0$ and $\vec{a}_{0}=0$ the determinants of the secondary and tertiary matrices will be equal $J_{2}=J_{1}^{2}, J_{3}=2 J_{1} J_{2}$.
Let's introduce the notation [2]

$$
\begin{gather*}
\sigma_{1}=\operatorname{Tr} A_{1}=\nabla \cdot \vec{v}, \quad \sigma_{2}=\operatorname{Tr} A_{2}=\nabla \cdot \vec{a}, \quad \sigma_{3}=\operatorname{Tr} A_{3}=\nabla \cdot \vec{w}, \tag{12}\\
\vec{\rho}_{1}=\nabla \times \vec{v}=\rho_{1} \vec{k}, \quad \vec{\rho}_{2}=\nabla \times \vec{a}=\rho_{2} \vec{k}, \quad \vec{\rho}_{3}=\nabla \times \vec{w}=\rho_{3} \vec{k}, \tag{13}
\end{gather*}
$$

where $\operatorname{Tr} A_{1}, \operatorname{Tr} A_{2}$ and $\operatorname{Tr} A_{3}$ are traces of the primary, secondary and tertiary matrices. The expression σ_{1} is called the continuity equation, and $\vec{\rho}_{1}$ the velocity vortex (vorticity) [3]. Flows and circulations of arbitrary order are related by expressions

$$
\begin{equation*}
\sigma_{k+1}=\sigma_{k}^{(1)}=\sigma_{1}^{(k)}, \quad \rho_{k+1}=\rho_{k}^{(1)}=\rho_{1}^{(k)} \tag{14}
\end{equation*}
$$

where

$$
\sigma_{1}^{(k)}=\frac{d^{(k)} \sigma_{1}}{d t^{(k)}}, \quad \rho_{1}^{(k)}=\frac{d^{(k)} \rho_{1}}{d t^{(k)}}, \quad k=\overline{1, n} .
$$

The characteristic equations for the primary, secondary and tertiary matrices have the form

$$
\begin{equation*}
\lambda_{k l}^{2}-\sigma_{k} \lambda_{k l}+J_{k}=0, \quad D_{k}=\sigma_{k}^{2}-4 J_{k} \tag{15}
\end{equation*}
$$

where

$$
k=\overline{1,3}, \quad l=\overline{1,2} .
$$

Definition 2. The values $\sigma_{k}, J_{k}, D_{k}, \rho_{k}$ are called for primary, secondary and tertiary characteristics of a stationary plane field of the system (1).

Theorem 2. For a stationary plane field of the system (1), the relations between the primary, secondary and tertiary characteristics of the field have the form [2]

$$
\begin{gather*}
\sigma_{2}=\sigma_{1}^{2}-2 J_{1}+\vec{v} \cdot \nabla \sigma_{1}, \tag{16}\\
\rho_{2}=\sigma_{1} \rho_{1}+\vec{v} \cdot \nabla \rho_{1}, \tag{17}\\
\sigma_{3}=2 \sigma_{1} \sigma_{2}-2 \dot{J}_{1}+\vec{a} \cdot \nabla \sigma_{1}+\vec{v} \cdot \nabla \sigma_{2}, \tag{18}\\
\rho_{3}=\sigma_{2} \rho_{1}+\sigma_{1} \rho_{2}+\vec{a} \cdot \nabla \rho_{1}+\vec{v} \cdot \nabla \rho_{2}, \tag{19}
\end{gather*}
$$

where

$$
\dot{J}_{1}=\sigma_{1} J_{1}+\vec{v} \cdot \nabla J_{1}
$$

The expression (16) is called the stationary flow equation, and (17) is called the stationary vortex equation [3].

Refrences

1. Andronov A. A., Vitt A.A., Khaikin S. E. Theory of Oscillators. Moscow, 1966.
2. Jackson. J. D. Classical Electrodynamics. USA, 1998.
3. Milne-Thomson L. M., Theoretical Hydrodynamics. England, 1968.
