2) предельная функция $x^*(t,x_0)$ является решением краевой задачи (1), (2) тогда и только тогда, когда, если точка $x_0 = x_0^*$ является решением определяющего уравнения:

$$\Delta(x_0) = \frac{1}{T} [g(x_0) + R(T, 0)x_0] - \frac{1}{T} \int_0^T R(T, \tau) f\left(\tau, x^*(\tau, x_0), \int_0^\tau \varphi(\tau, s, x^*(s, x_0)) ds\right) d\tau = 0.$$

При подстановке этого значения $x=x_0^*$ в (3), получим приближенное решение краевой задачи (1), (2).

Литература

- 1. Самойленко А.М., Ронто Н.И. *Численно-аналитические методы в теории краевых задач обыкно-венных дифференциальных уравнений*. Киев: Наукова думка, 1992.
- 2. Нуржанов О.Д., Исмайлова Н.К. O решении многоточечной краевой задачи для интегродифференциальных уравнений типа Вольтерра // Вестник Каракалпакского государственного университета им. Бердаха. 2021. Т. 55. № 4. С. 11–14.

АППРОКСИМАЦИИ ЭРМИТА-ЯКОБИ ДЛЯ СИСТЕМЫ ФУНКЦИЙ

Т.М. Оснач, Н.В. Рябченко, А.П. Старовойтов

Пусть $\mathbf{f} = (f_1, ..., f_k)$ – набор, состоящий из k степенных рядов

$$f_j(z) = \sum_{i=0}^{\infty} f_i^j z^i, \quad j = 1, ..., k$$
 (1)

с комплексными коэффициентами. Не ограничивая общности, считаем, что все ряды в (1) сходятся в некоторой окрестности нуля и тем самым равенства (1) определяют систему \mathbf{f} , состоящую из функций аналитических в окрестности нуля.

Множество k –мерных мультииндексов, т. е. упорядоченных k целых неотрицательных чисел, обозначим \mathbb{Z}_+^k . Порядок мультииндекса $\overrightarrow{m} = (m_1, ..., m_k) \in \mathbb{Z}_+^k$ — это сумма $m = m_1 + ... + m_k$. Зафиксируем индекс $n \in \mathbb{Z}_+^1$ и мультииндекс $\overrightarrow{m} = (m_1, m_2, ..., m_k) \in \mathbb{Z}_+^k$.

Определение 1. Аппроксимациями Эрмита–Паде для пары (n, \overrightarrow{m}) и системы функций (1) называются рациональные дроби

$$\pi^{j}_{n_{j}, \vec{m}}(z) = \pi^{j}_{n_{j}, \vec{m}}(z; \mathbf{f}) = \frac{P^{j}_{n_{j}}(z)}{Q_{m}(z)} \ j = 1, ..., k,$$

где тождественно не равный нулю многочлен $Q_m(z)=Q_m(z,\mathbf{f})$, $\deg Q_m\leqslant m$ и многочлены $P^j_{n_j}(z)=P^j_{n_j}(z;\mathbf{f})$, $\deg P^j_{n_j}\leqslant n_j$, $n_j=n+m-m_j$ при j=1,...,k удовлетворяют условиям

$$Q_m(z)f_j(z) - P_{n_j}^j(z) = O(z^{n+m+1}).$$
(2)

Если k=1, то **f** состоит из одной функции $f(z)=f_1(z)$. В этом случае $\pi^1_{n_1,\overrightarrow{m}}(z;f_1)$ называют аппроксимацией Паде порядка (n,m) и обозначают $\pi_{n,m}(z;f)$ [1].

Определение 2. Аппроксимациями Эрмита—Якоби для пары (n, \overrightarrow{m}) и системы функций **f**, определённых равенствами (1), будем называть (см. [2]) рациональные дроби

$$\widehat{\pi}_{n_j, \overrightarrow{m}}^j(z) = \widehat{\pi}_{n_j, \overrightarrow{m}}^j(z; \mathbf{f}) = \frac{\widehat{P}_{n_j}^j(z)}{\widehat{Q}_m(z)},$$

где многочлены, стоящие в числителе и знаменателе, $\widehat{Q}_m(z)=\widehat{Q}_m(z,\mathbf{f})$, $\deg \widehat{Q}_m\leqslant m$, $\widehat{P}_{n_j}(z)=\widehat{P}_{n_j}(z;\mathbf{f})$, $\deg \widehat{P}_{n_j}^j\leqslant n_j$, $n_j=n+m-m_j$ при j=1,...,k подбираются таким образом, чтобы

$$f_j(z) - \frac{\widehat{P}_{n_j}^j(z)}{\widehat{Q}_m(z)} = O(z^{n+m+1}).$$
 (3)

Аппроксимации Эрмита–Паде $\{\pi^j_{n_j,m}(z)\}_{j=1}^k$ определяются однозначно [3], в то время как аппроксимации Эрмита–Якоби могут не существовать. К. Якоби в [2] при k=1 нашёл достаточное условие (теорема Якоби) их существования. В данном сообщение получено обобщение теоремы Якоби на случай произвольных k>1.

Для единственности существования многочленов $Q_m(z)$, $P_{n_j}^j(z)$ необходимо и достаточно (см. [3], [4]), чтобы ранг матрицы $F_{n,\overrightarrow{m}}$ порядка $m\times (m+1)$ был максимальный, т. е. равен m. Матрица $F_{n,\overrightarrow{m}}$ определяется равенством

$$F_{n,\vec{m}} = \begin{pmatrix} f_{n-m_1+1}^1 & f_{n-m_1+2}^1 & \dots & f_{n_1+1}^1 \\ f_{n-m_1+2}^1 & f_{n-m_1+3}^1 & \dots & f_{n_1+2}^1 \\ \dots & \dots & \dots & \dots \\ f_n^1 & f_{n+1}^1 & \dots & f_{n+m}^1 \\ \dots & \dots & \dots & \dots \\ f_{n-m_k+1}^k & f_{n-m_k+2}^k & \dots & f_{n_k+1}^k \\ f_{n-m_k+2}^k & f_{n-m_k+3}^k & \dots & f_{n_k+2}^k \\ \dots & \dots & \dots & \dots \\ f_n^k & f_{n+1}^k & \dots & f_{n+m}^k \end{pmatrix} . \tag{4}$$

Матрица $F_{n,\vec{m}}$ состоит из блок-матриц

$$F^{j} = \begin{pmatrix} f_{n-m_{j}+1}^{j} & f_{n-m_{j}+2}^{j} & \cdots & f_{n_{j}+1}^{j} \\ f_{n-m_{j}+2}^{j} & f_{n-m_{j}+3}^{j} & \cdots & f_{n_{j}+2}^{j} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n}^{j} & f_{n+1}^{j} & \cdots & f_{n+m}^{j} \end{pmatrix}$$

порядка $m_j \times (m+1)$, расположенных друг над другом в порядке следования. В случае, если $m_j=0$ матрица $F_{n,\overrightarrow{m}}$ не содержит блок-матрицу F^j . При k=1 либо $\overrightarrow{m}=(m_1,0,0,...,0)$ матрица $F_{n,\overrightarrow{m}}$ состоит из одного блока F^1 . Если в $F_{n,\overrightarrow{m}}$ удалить последний столбец, то получим квадратную матрицу порядка m. Определитель этой матрицы обозначим через $H_{n,\overrightarrow{m}}$. Тогда

$$H_{n,\overrightarrow{m}} = \begin{vmatrix} f_{n-m_1+1}^1 & f_{n-m_1+2}^1 & \cdots & f_{n_j}^1 \\ \vdots & \vdots & \ddots & \vdots \\ f_n^1 & f_{n+1}^1 & \cdots & f_{n+m-1}^1 \\ \vdots & \vdots & \ddots & \vdots \\ f_{n-m_k+1}^k & f_{n-m_k+2}^k & \cdots & f_{n_k}^k \\ \vdots & \vdots & \ddots & \vdots \\ f_n^k & f_{n+1}^k & \cdots & f_{n+m-1}^k \end{vmatrix}.$$

Теорема 1. Если для мультииндекса (n, \overrightarrow{m}) и системы функций \mathbf{f} , определенных равенствами (1), определитель $H_{n,\overrightarrow{m}} \neq 0$, то аппроксимации Эрмите–Якоби существуют, определяются единственным образом и каждая из них тождественно совпадает с соответствующей аппроксимацией Эрмита–Паде, т. е.

$$\widehat{\pi}_{n_j, \overrightarrow{m}}^j(z; \mathbf{f}) = \pi_{n_j, \overrightarrow{m}}^j(z; \mathbf{f}), \quad j = 1, \dots, k.$$
(5)

Систему \mathbf{f} назовём вполне совершенной [4], если для любого мультииндекса (n, \overrightarrow{m})

$$\deg Q_m = m, \ \deg P_{n_j}^j = n_j, \ HOД(Q_m, P_{n_j}^j) = 1.$$

Следствие 1. Если система f вполне совершенна, то для любого мультииндекса (n, \overrightarrow{m}) существуют аппроксимации Эрмита–Якоби и справедливы равенства (5).

Следствие 2.Теорема Якоби (см. [2]) является является частным случаем теоремы 1.

Литература

- 1. Бейкер Дж. мл., Грейвс-Моррис П. *Аппроксимации Паде. 1. Основы теории. 2. Обобщения и при- ложения.* М.: Мир, 1986.
- 2. Jacobi C. "Uber die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function // Journal für die reine und angewandte Mathematik. 2019. № 30. P. 127–156.
- 3. Старовойтов А.П., Рябченко Н.В. *О единственности решений задач Эрмита Паде* // Весці Нацыянальнай акадэміі навук Беларусі. 2019. Т. 55. № 4. С. 445–456.
- 4. Старовойтов А.П., Рябченко Н.В. *О детерминантных передставлениях многочленов Эрмита* Паде // Труды Московского математического общества. 2022. Т. 83. № 1. С. 17–36.

О СУЩЕСТВОВАНИИ ТРИГОНОМЕТРИЧЕСКИХ АППРОКСИМАЦИЙ ЭРМИТА – ЯКОБИ

А. П. Старовойтов, Е. П. Кечко, Т. М. Оснач

Пусть $\mathbf{f^t} = (f_1^t, ..., f_k^t)$ – набор тригонометрических рядов

$$f_j^t(x) = \frac{a_0^j}{2} + \sum_{l=1}^{\infty} \left(a_l^j \cos lx + b_l^j \sin lx \right), \quad j = 1, 2..., k$$
 (1)

с действительными коэффициентами. Считаем, что ряды (1) сходятся при всех $x \in \mathbb{R}$ и каждый из них задаёт функцию, определенную на всей действительной прямой.

Множество k-мерных мультииндексов, являющихся упорядоченным набором k целых неотрицательных чисел, обозначим \mathbb{Z}_+^k . Порядок мультииндекса $\overrightarrow{m} = (m_1, ..., m_k) \in \mathbb{Z}_+^k$ — это сумма $m = m_1 + ... + m_k$. Зафиксируем индекс $n \in \mathbb{Z}_+^1$ и мультииндекс $\overrightarrow{m} = (m_1, ..., m_k) \in \mathbb{Z}_+^k$ и рассмотрим следующую задачу:

Задача ${\bf A^t}$. Для набора тригонометрических рядов (1) найти тождественно не равный нулю тригонометрический многочлен $Q_m^t(x)=Q_{n,\overrightarrow{m}}^t(x;{\bf f^t})$, $\deg Q_m^t\leqslant m$ и такие тригонометрические многочлены $P_j^t(x)=P_{n_j,n,\overrightarrow{m}}^t(x;{\bf f^t})$, $\deg P_j^t\leqslant n_j$, $n_j=n+m-m_j$, чтобы для j=1,...,k

$$Q_m^t(x)f_j^t(x) - P_j^t(x) = \sum_{l=n+m+1}^{\infty} (\tilde{a}_l^j \cos lx + \tilde{b}_l^j \sin lx), \quad j = 1, 2..., k,$$