$$L_B u = 0, \quad (x, t) \in G_T, \tag{2}$$

$$u(x,0) = \varphi(x), \quad 0 \leqslant x \leqslant l, \tag{3}$$

$$u(0,t) = 0, \quad 0 \leqslant t \leqslant T, \tag{4}$$

$$\left(x^{k-1}u(x,t)\right)\Big|_{x=1} + \int_{0}^{l} u(x,t)xdx = 0, \quad 0 \leqslant t \leqslant T,$$
(5)

где $\varphi(x)$ – заданная достаточно гладкая функция, удовлетворяющая условию согласования

$$\left(x^{k-1}\varphi(x)\right)\bigg|_{x=1} + \int_{0}^{l} \varphi(x)xdx = 0.$$
 (6)

Теорема. Задача (1) – (6) не может иметь более одного решения. Отметим, что в работе [5] была рассмотрена задача (1) – (6) при 0 < k < 1.

Литература

- 1. Бенуар Нур-Эддин, Юрчук Н. И. Смешанная задача с интегральным условием для параболических уравнений с оператором Бесселя // Дифференц, уравнения. 1991. 27:12. С. 2094–2098.
- 2. Mesloub S. and Bouziani A., Mixed problem with a weighted integral condition for a parabolic equation with the Bessel operator // Journal of Applied Mathematics and Stochastic Analysis. 2002. 15:3. P. 277-286.
- 3. Bouziani A, Oussaeif T.-E. and Benaoua L. A Mixed Problem with an Integral Two-Space-Variables Condition for Parabolic Equation with The Bessel Operator // Journal of Mathematics. 2013. Article ID 457631. 8 p.
- 4. Гарипов И.Б., Мавлявиев Р.М. *Нелокальная задача с интегральным условием для параболического уравнения с оператором Бесселя* // Вестник российских университетов. 2022. 27:139. С. 231–246.
- 5. Гарипов И. Б., Мавлявиев Р. М. *О единственности решения одной краевой задачи с интегральным условием для сингулярного параболического уравнения с оператором Бесселя* // XX Международная научная конференция по дифференциальным уравнениям (ЕРУГИНСКИЕ ЧТЕНИЯ-2022): материалы Международной научной конференции. Новополоцк. Ч.2. Новополоцк: Полоцкий государственный университет. 2022. С. 5-6.

ОБ ОДНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ ЛИНЕЙНОГО НЕСТАЦИОНАРНОГО УРАВНЕНИЯ СОСТАВНОГО ТИПА

В.В. Дайняк

Рассмотрим задачу типа Дирихле на плоскости для уравнений определенного вида третьего порядка с коэффициентами, зависящими от $x=(x_0,x_1)$, в главной части. Эти дифференциальные уравнения относительно неизвестной функции u(x) переменных $x=(x_0,x_1)$ запишем в виде:

$$\mathcal{L}u = \left(\frac{\partial}{\partial x_0} + \frac{\partial}{\partial x_1}\right) \left(\frac{\partial^2 u}{\partial x_0^2} + \frac{\partial}{\partial x_1} \left(a(x)\frac{\partial u}{\partial x_1}\right)\right) + \mathcal{L}_1(x, D)u = f(x),\tag{1}$$

где $\mathcal{L}_1(x,D)u = p_0(x)\frac{\partial u}{\partial x_0} + p_1(x)\frac{\partial u}{\partial x_1} - \lambda(x)u$. Здесь a(x) – достаточно гладкая функция, а коэффициенты полинома $\mathcal{L}_1(x,D)$ и их производные $\frac{\partial p_i(x)}{\partial x_i}$ (i=0,1) измеримы и ограничены. Ниже будут сформулированы некоторые дополнительные условия опе-

ратора \mathcal{L} , которые являются достаточными. С помощью этих условий доказывается однозначная разрешимость уравнения (1) в некоторой области при наличии простейших граничных условий, которые называются условиями типа Дирихле.

Обозначим через Ω произвольную ограниченную область плоскости переменных x с кусочно-гладкой границей $\partial\Omega$, а через $n=(n_0,n_1)$ единичный вектор внешней нормали к поверхности $\partial\Omega$.

Пусть $\mathcal{L}_0(n) = n_0^3 + n_0^2 n_1 + a(x) n_0 n_1^2 + a(x) n_1^3$. В области Ω рассмотрим уравнение (1) относительно функции u(x), которая удовлетворяет однородным граничным условиям типа Дирихле:

$$u|_{\partial\Omega} = 0, \quad \frac{\partial u}{\partial n}\Big|_{\partial\Omega^-} = 0,$$
 (2)

где $\partial\Omega^-$ – часть границы $\partial\Omega$, в точках которой $\mathcal{L}_0(n)<0$.

Вместе с задачей (1)-(2) будем рассматривать и сопряженную задачу:

$$\mathcal{L}^+ v = g(x),\tag{3}$$

$$v|_{\partial\Omega} = 0, \quad \frac{\partial v}{\partial n}\Big|_{\partial\Omega^+} = 0, \quad \partial\Omega^+ = \{x \in \Omega | \mathcal{L}_0(n) > 0\},$$
 (4)

где \mathcal{L}^+ — оператор, формально сопряженный к оператору \mathcal{L} и

$$\mathcal{L}^{+} = -\left(\frac{\partial}{\partial x_{0}} + \frac{\partial}{\partial x_{1}}\right)\left(\frac{\partial^{2}}{\partial x_{0}^{2}} + \frac{\partial}{\partial x_{1}}\left(a(x)\frac{\partial}{\partial x_{1}}\right)\right) + \mathcal{L}_{1}^{+}(x, D),$$

 \mathcal{L}_{1}^{+} – оператор первого порядка, формально сопряженный к $\mathcal{L}_{1}.$

Введем обозначения: $H^l(\Omega)$ – пространство Соболева функций, определенных в области Ω с квадратично суммируемыми обобщенными производными до порядка l (l==0,1,2,3). $H_0^l(\Omega)$ – подпространства пространств $H^{\bar{l}}(\Omega)$, элементы которых удовлетворяют условиям (2) ((4)). $H_0^{-1}(\Omega)$ — сопряженное к $H_0^1(\Omega)$ пространство относительно канонической билинейной формы $(u,v),\ u\in H_0^{-1}(\Omega),v\in H_0^1(\Omega),$ являющейся продолжением по непрерывности билинейной формы $(u,v)_{L_2(\Omega)}$, где $u\in L_2(\Omega), v\in H_0^1(\Omega)$. Заметим, что $H^0(\Omega)=L_2(\Omega)$, то есть $(\cdot,\cdot)_{H^0(\Omega)}$ - скалярное произведение в $L_2(\Omega)$.

Задачи (1)-(2) и (3)-(4) будем рассматривать как решения операторных уравнений

$$\mathcal{L}u = f \tag{5}$$

И

$$\mathcal{L}^+ v = q \tag{6}$$

с областями определения $D(\mathcal{L})=H_0^3(\Omega)$ и $D(\mathcal{L}^+=H_0^3(\Omega))$ соответственно. Построим расширения L и L^+ операторов \mathcal{L} и $\mathcal{L}^+(L\in H_0^1(\Omega),L^+\in H_0^{-1}(\Omega))$. В качестве расширений L и L^+ возьмем сопряженные операторы к операторам \mathcal{L}^+ и \mathcal{L} соответственно, действующие из $H_0^1(\Omega)$ в $H_0^{-1}(\Omega)$. Решения уравнений

$$Lu = f$$
, $L^+v = g$

назовем обобщенным решением задачи (1)–(2) или уравнения (5) и задачи (3)–(4) или уравнения (6) соответственно.

Имеют место следующие теоремы:

Теорема 1. Если выполняется условие $\frac{1}{2} \Big(\frac{\partial p_0(x)}{\partial x_0} + \frac{\partial p_1(x)}{\partial x_1} \Big) + \lambda(x) > 0$, то для всех $u, v \in H^1_0(\Omega)$ справедливи неравенства

$$||u||_{H_0^1(\Omega)} < c||Lu||_{H_0^{-1}(\Omega)},$$

$$||v||_{H_0^1(\Omega)} < c^* ||L^+ v||_{H_0^{-1}(\Omega)},$$

где постоянные c>0 и $c^*>0$ не зависят от функций и и v.

Теорема 2. При выполнении условий теоремы 1 для всех $f \in H_0^{-1}(\Omega)$ существует и единственно обобщенное решение $u \in H_0^1(\Omega)$ задачи (1)–(2), соответственно для всех $g \in H_0^{-1}(\Omega)$ существует и единственно обобщенное решение $v \in H_0^1(\Omega)$ задачи (3)–(4).

Литература

- 1. Корзюк В.И., Дайняк В.В., Протько А.А. Задача типа Дирихле для составного уравнения третьего порядка // Вестник Белорусского государственного университета. Сер.1. 2012. №3. С. 116–121.
- 2. Дайняк В.В., Корзюк В.И. Задача типа Дирихле для линейного дифференциального уравнения третьего порядка // Дифференциальные уравнения. 1992. Т. 28. №6. С. 1056—1060.
- 3. Корзюк В.И. Метод энергетических неравенств и операторов осреднения. Граничные задачи для дифференциальных уравнений с частными производными. Минск: БГУ, 2013.
 - 4. Корзюк В.И. Уравнения математической физики: курс лекций. Минск, 2008.

ЗАДАЧА КОШИ ДЛЯ ПСЕВДОГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ

Г.В. Демиденко, Л.Н. Бондарь

В докладе речь пойдет о разрешимости задачи Коши для класса псевдгиперболических уравнений

$$\begin{cases}
\mathcal{L}_{0}(D_{x})D_{t}^{l}u + \sum_{k=0}^{l-1} \mathcal{L}_{l-k}(D_{x})D_{t}^{k}u = f(t,x), t > 0, \\
D_{t}^{k}u\big|_{t=0} = 0, k = 0, \dots, l-1.
\end{cases}$$
(1)

Класс псевдогиперболических уравнений был введен в монографии [1]. Уравнения такого типа возникают при моделировании упругих колебаний стержня, балки, в теории волноводов и др. (см., например, [2–4]).

Дадим определение псевдогиперболического уравнения без младших членов

$$L(D_t, D_x)u = f(t, x), (2)$$

где
$$L(D_t, D_x) = \mathcal{L}_0(D_x)D_t^l + \sum_{k=0}^{l-1} \mathcal{L}_{l-k}(D_x)D_t^k.$$

Будем предполагать, что выполнены следующие условия:

Условие 1. Символ дифференциального оператора $L(D_t, D_x)$ однороден относительно вектора $(\alpha_0, \alpha) = (\alpha_0, \alpha_1, \dots, \alpha_n)$, $\alpha_0 > 0$, $1/\alpha_j$ — натуральные числа:

$$L(c^{\alpha_0}i\eta, c^{\alpha}i\xi) = cL(i\eta, i\xi), \quad c > 0.$$