УДК 547.42 ВЫБОР ОПТИМАЛЬНЫХ КАТАЛИЗАТОРОВ И СТАБИЛИЗАТОРОВ СИНТЕЗА ПОЛИЭТИЛЕНТЕРЕФТАЛАТА

Ю.А. БЫЧКОВА, А.А. САВИЦКАЯ Научные руководители: С.В. ПЕТРОВА-КУМИНСКАЯ, канд. хим. наук, доц.; О.М. БАРАНОВ, канд. хим. наук, доц. УО «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ»

г. Могилев

Полиэтилентерефталат (ПЭТ), как волокнообразующий полимер, занимает доминирующее положение на мировых промышленных рынках благодаря полиэфирным волокнам и нитям, ставшим в последние годы лидером среди всех видов химических и натуральных волокон.

Качество полимера зависит от правильного выбора условий его синтеза: температурного режима, продолжительности, используемых катализаторов и стабилизаторов, условий их ввода. Влияние каждого фактора важно как индивидуально, так и в сочетании с другими. Катализаторы, например, не только ускоряют реакции синтеза полиэфира, но и активируют процессы его деструкции, побочные реакции с исходными мономерами, предопределяют термическое разложение полимера, приводящее к снижению молекулярной массы, возрастанию количества карбоксильных групп, появлению окраски и, в конечном счете, к ухудшению качества волокон и увеличению количества полимерных отходов.

В процессе синтеза ПЭТ, вырабатываемого на ОАО «Могилевхимволокно», применяются катализаторы: ацетат марганца (на стадии переэтерификации) и оксид сурьмы (на стадии поликонденсации), который, восстанавливаясь до металлической сурьмы, придает полимеру серый цвет и, в ряде случаев, затрудняет переработку. Поэтому перед предприятием стоит проблема выбора новых каталитических систем. Кроме того, актуален также поиск оптимальных стабилизаторов для повышения термостойкости полимера.

Данная работа проводилась с целью решения вышеуказанных задач. На первом этапе работы изучалось влияние различных катализаторов и стабилизаторов синтеза ПЭТ на исходный мономер — этиленгликоль (ЭГ), что может в определенной степени служить мерой их селективного действия.

Этиленгликоль подвергался воздействию температур в интервале $150-240~^{\circ}$ С, влиянию катализаторов: ацетата марганца (Ac₂Mn), оксида сурьмы, ацетата сурьмы, тетрабутоксититана (ТБТ) и оксида титана на твердом носителе и стабилизаторов: ортофосфорной, фосфористой кислот,

триэтилфосфата (ТЭФ) и триэтилфосфонацетата (ТЭФА). Нагрев каждой пробы проводился в течение 1 часа в запаянных ампулах.

Изменения в составе ЭГ после термической обработки чистого ЭГ и с добавками катализаторов и стабилизаторов оценивались хроматографическим методом на газовом хроматографе марки «Хромос ГХ 1000» и по содержанию образующейся воды методом Фишера.

На основании проведенных исследований можно заключить, что ЭГ является достаточно стойким к высоким температурам; это хорошо согласуется с литературными данными. Такие катализаторы, как ацетат марганца, ТБТ и ТiO_2 на носителе не проявляют активности по отношению к ЭГ и, следовательно, их использование при синтезе ПЭТ не должно инициировать побочные реакции с ЭГ. Соединения сурьмы (оксид и ацетат), вводимые в ЭГ, при нагреве вызывают значительные процессы дегидратации и изменения в составе ЭГ. В качестве побочных веществ в ЭГ обнаружены диэтиленгликоль, ацетальдегид и несколько неидентифицированных продуктов.

Применяемые в настоящее время на ОАО «Могилевхимволокно» такие термостабилизаторы, как ортофосфорная и фосфористая кислоты еще сильнее снижают термическую устойчивость ЭГ, содержание основного вещества при их использовании снижается с 99,9 (чистый этиленгликоль) до 94,7 % и 94,3 % соответственно. Напротив, фосфорорганические стабилизаторы: ТЭФ и ТЭФА практически не влияют на устойчивость ЭГ. Однако, как показали опыты по синтезу полимера, эти стабилизаторы не обеспечивают требуемую термостойкость ПЭТ. По-видимому, оптимальным вариантом может быть использование систем стабилизаторов кислот – ТЭФ (ТЭФА).

Результаты воздействия на ЭГ различных факторов представлены в табл. 1. Количество используемых катализаторов и стабилизаторов дано в процентах от массы этиленгликоля.

Табл. 1. Содержание основного вещества в ЭГ после термического воздействия

t, °C	Ac ₂ Mn (0,024)	Sb ₂ O ₃ (0,024)	Ac ₃ Sb (0,049)	TET (0,14)	TiO ₂ (0,01)	Смесь Ac ₂ Mn + Sb ₂ O ₃ (0,024+0,024)	H_3PO_4 (0,0317)	H ₃ PO ₃ (0,049)	ТЭФ (0,006)	ТЭФА (0,008)
150	99,88	96,03	97,32	99,15	99,97	99,90	98,13	97,02	98,50	99,94
180	99,86	96,57	96,31	99,37	99,80	99,89	94,28	94,01	98,86	99,79
210	99,88	97,02	97,11	99.40	99,97	99,75	93,59	93,44	99,15	99,25
220	99,86	95,99	96.74	99,57	99,94	98,89	93,98	94,44	99,41	98,80
240	99,73	95,90	95,59	98,23	99,44	98,88	94,71	94,33	97,49	98,96