УДК 635.64:631.527.52:631.563:631.544.4 СОЗДАНИЕ ГИБРИДОВ ТОМАТА ДЛЯ ПЛЕНОЧНЫХ ТЕПЛИЦ, ОБЛАДАЮЩИХ ПОВЫШЕННОЙ ЛЕЖКОСТЬЮ ПЛОДОВ НА ФЕРТИЛЬНОЙ И СТЕРИЛЬНОЙ ОСНОВАХ

А.М. ДОБРОДЬКИН

Научные руководители: И.Г. ПУГАЧЕВА, канд. с.-х. наук, доц.; М.М. ДОБРОДЬКИН, канд. с.-х. наук, доц. УО «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ» г. Горки

Одним из основных направлений в селекции тепличного томата является создание гетерозисных гибридов F_1 . Использование эффекта гетерозиса позволяет ускорить и повысить эффективность селекционного процесса. На создание гибридов F_1 требуется меньше времени, чем на получение аналогичного чистолинейного сорта. При этом в одном генотипе может объединяться комплексная устойчивость к 4–6 наиболее распространенным болезням и вредителям томата, нивелируется отрицательный плейотропный эффект многих полезных генов, увеличивается продуктивность на 25–50 %. В мировой практике селекции и семеноводства овощей почти все государства с развитым сельскохозяйственным производством перешли на создание и выращивание гибридов F_1 : Япония, США, Голландия — 100 %; Франция, Германия, Англия, Италия — 85–95 %; Дания, Венгрия, Испания и ряд других стран 60–80 % от общего реестра сортов и гибридов этих стран.

Ежегодное воспроизводство гибридных семян у томата связано с большими затратами ручного труда (кастрация, изоляция, маркировка цветков), что является одной из причин, сдерживающих широкое возделывание гетерозисных гибридов томата.

Кастрация представляет собой наиболее сложную и трудоёмкую часть работы, на которую расходуется более 50–60 % времени. Одним из наиболее удобных способов, позволяющих получать необходимое количество дешевых гибридных семян является использование при гибридизации стерильных форм в качестве материнского компонента. При этом исключаются трудоемкие процессы - кастрация, изоляция, маркировка опыленных цветков. Это делает гибридные семена более дешевыми и доступными для возделывания на больших площадях, как в открытом, так и закрытом грунте.

Нестабильность урожая томата защищённого грунта в производственных условиях обусловлена изменяющимися условиями микроклимата пленочных теплиц, где наблюдается опадение неоплодотворённых цветков

при резких перепадах температуры и влажности. Особую значимость в связи с этим приобретает адаптивная селекция, направленная на сочетание продуктивности и устойчивости к стрессам в одном генотипе.

Одним из путей стабилизации урожая в изменяющихся условиях среды является использование партенокарпических форм, способных завязывать плоды без опыления. Перспективным направлением селекции томата в Беларуси представляется создание транспортабельных и лежких гибридов, способных в нерегулируемых условиях хранения и транспортировки длительное время не перезревать, не терять окраски, сохранять твердость и плотность плодов. Создание таких гибридов увеличивает срок поступления свежих томатов, позволяет перевозить продукцию на дальние расстояния без потери качества.

Целью наших исследований являлось создание с использованием функциональной мужской стерильности и партенокарпии экологически стабильных высокопродуктивных сортов и гибридов томата для пленочных теплиц с повышенной лежкостью плодов.

Программа исследований включала следующие задачи:

- провести биометрические измерения и фенологические наблюдения изучаемых образцов томата;
- изучить хозяйственно-ценные признаки, включая длительность хранения плодов в нерегулируемых условиях среды, гетерозисных гибридов томата совместно с исходными формами в защищенном грунте;
- передать в Государственную инспекцию по испытанию и охране сортов растений высокоурожайные гетерозисные гибриды томата, для пленочных теплиц, обладающие повышенной лежкостью плодов в нерегулируемых условиях.

Исследования проводились на опытном поле кафедры сельскохозяйственной биотехнологии и экологии УО «БГСХА». Изучаемые образцы в конкурсном питомнике пленочных теплиц высаживались в трехкратной повторности по 5 растений на делянке. Схема посадки 70х30 см. Доза удобрений: N60 (P2O5)120 (K2O)120. Агротехника общепринятая для томата защищенного грунта. Для проведения объективной оценки испытуемых гибридов использовали следующие стандарты: идетерминантные гибриды Полымя и Старт, а так же детерминантный гибрид первого поколения Александр.

Биометрические измерения проводились в фазу плодоношения. Фенологические наблюдения — на протяжении всего вегетационного периода. Сборы урожая проводились с интервалом 7 дней, на их основании рассчитаны основные элементы продуктивности.

Для выявления характера лежкости плодов гибридных комбинаций и исходных форм, был заложен эксперимент по хранению плодов лежких форм в нерегулируемых условиях среды. Исходным материалом для соз-

дания гетерозисных гибридов томата выступали: в качестве материнских форм стерильные (ФМС – функциональная мужская стерильность), партенокарпические и фертильные образцы: Б-3-1-8 (ФМС), С-9464 (ФМС), №4 (ФМС + партенокарпия), Б-2-5 (ФМС + партенокарпия), Линия — 19/5, Линия — 322 (фертильные); отцовскими формами являлись линии, несущие ген лежкости NOR — Линия — 19/1, Линия — 18/6, несущие ген лежкости RIN — Линия — 19/6, Линия — 18/9, Линия — 19/0. В ходе скрещивания было получено 30 гибридных комбинаций.

В ходе трехлетних испытаний выделились 22 лучшие по комплексу хозяйственно-ценных признаков гибридные комбинации. Далее приводится их характеристика. По результатам биометрических измерений гибридов томата в необогреваемых пленочных теплицах в течение трех лет (табл.1) большинство образцов можно отнести к индетерминантным (172—259 см). Полудетерминантные растения высотой 126—154 см характерны для следующих гибридов: Линия — Б-3-1-8 х Линия — 19/6, Линия — Б-3-1-8 х Линия — №4 х Линия — №4 х Линия — №4 х Линия — №4 х Линия — 19/6. Явно детерминантным типом роста обладают гибридстандарт Александр и гибрид Линия-Б-3-1-8 х Линия 18/9.

Небольшое число кистей на главном стебле (3,0-5,6 шт.) отмечено у гибридов F1 Линия — Б-3-1-8 х Линия — 18/9, Линия — Б-3-1-8 х Линия — 19/6, Линия — №4 х Линия — 19/6 и гибрида-стандарта Александр. Остальные образцы имели 7,5-11,7 кистей на главном стебле.

У большинства образцов среднее количество плодов на одной кисти составило 6–9 штук. Более низким этот показатель оказался у гибридов Линия-Б-3-1-8 х Линия 18/9 и Линия №4 х Линия 18/9, а также у гибридовстандартов Старт и Александр (4,8-5,3шт.).

Высокая завязываемость плодов (85–91 %) по результатам трехлетних испытаний отмечена у большинства изучаемых гибридных комбинаций с участием Линии С-9464, а так же у гибридов Линия — Б-3-1-8 х Линия — 18/6, Линия — Б-2-5 х Линия — 18/6, Линия — Б-2-5 х Линия — 18/6, Линия — Б-2-5 х Линия — 18/6, Линия — №4 х Линия — 18/9. Низкий процент завязывания плодов (66-67 %) отмечен у F1 Линия-Б-3-1-8 х Линия-18/9 и F1 Линия-Б-3-1-8 х Линия-19/1. У остальных образцов завязывалось 74—83 % плодов. Значения этого показателя изменялись по годам и сильно зависели от погодных условий.

Табл. 1. Биометрические показатели гибридных комбинаций в не обогреваемых пленочных теплицах (2007–2009 гг.).

Наименование	Высота	Количе-	Число	Среднее	Завязы-
образца	расте-	ство кис-	листь-	количе-	ваемость
	ния,	тей на	ев ме-	ство	плодов,
	СМ	главном	жду	плодов	%
		стебле,	кистя-	на	
		шт.	ми, шт.	кисти,	
				ШТ.	
Стандарт Полымя F1	189	9,5	3,0	6,6	70
Линия – Б-3-1-8 х Линия – 18/6	172	9,1	2,9	7,0	85
Линия – Б-3-1-8 х Линия – 18/9	80	4,6	1,7	5,3	66
Линия – Б-3-1-8 х Линия – 19/0	194	10,0	3,1	7,4	86
Линия – Б-3-1-8 х Линия – 19/1	154	7,8	3,2	7,9	67
Линия – Б-3-1-8 х Линия – 19/6	139	5,6	2,3	7,3	83
Линия – С-9464 х Линия – 18/6	208	9,6	3,1	9,5	88
Линия – С-9464 х Линия – 18/9	206	10,3	3,1	8,0	82
Линия – С-9464 х Линия – 19/0	240	11,5	3,0	8,8	91
Линия – С-9464 х Линия – 19/1	229	10,6	3,0	8,7	87
Линия – С-9464 х Линия – 19/6	226	10,6	3,0	8,8	85
Линия – 322 x Линия – 18/6	219	9,3	3,0	6,6	74
Линия – 322 x Линия – 19/0	221	10,4	2,9	7,3	79
Линия – Б-2-5 x Линия – 18/6	213	10,1	3,1	7,9	89
Линия – Б-2-5 x Линия – 19/1	202	10,6	3,0	8,5	87
Линия – 19/5 x Линия – 19/0	230	10,7	3,0	7,6	82
Линия – 19/5 х Линия – 19/1	232	11,0	3,0	6,3	75
Линия – 19/5 х Линия – 19/6	230	10,0	2,5	6,9	80
Линия — №4 х Линия — 18/6	197	8,3	2,9	7,3	78
Линия — №4 х Линия — 18/9	142	7,5	2,8	5,1	88
Линия – №4 х Линия – 19/0	199	8,8	2,7	7,2	80
Линия – №4 х Линия – 19/1	211	10,7	3,0	7,8	74
Линия – №4 х Линия – 19/6	126	4,7	1,9	6,8	74
Стандарт Старт F1 (2009г.)	259	11,7	3,0	5,8	86
Стандарт Александр F1 (2009г)	85	3,0	0,9	4,8	86

Результаты оценки основных хозяйственно-ценных признаков изучаемых гибридных комбинаций в 2007–2009 годах представлены на рис. 1–3.

Максимальной товарной урожайностью (рис. 1), превышающей уровень лучшего из стандартов гибрида первого поколения Старт на $0.39-0.92~{\rm kr/m}^2$, характеризуются комбинации Линия — C-9464 х Линия 18/6, Линия — C-9464 х Линия 19/0, Линия- $322~{\rm x}$ Линия 18/9 и Линия $19/5~{\rm x}$

Линия 19/6. Еще восемь гибридов по товарной урожайности не уступали стандарту Полымя.

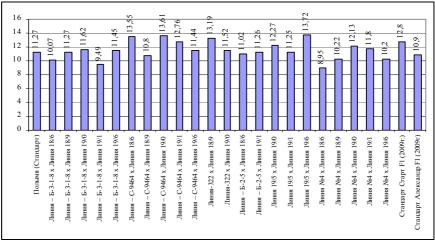


Рис. 1. Среднее значение товарной урожайности лучших гибридных комбинаций за 2007-2009 гг., кг/м 2

Масса плода (рис.2) варьировала от 56 граммов у гибрида Б-2-5 х Линия 19/1 до 118 граммов у гибрида Линия 322 х Линия 18/9. Наибольшее значение средней массы плода среди стандартов отмечено у F_1 Старт (102,5г).

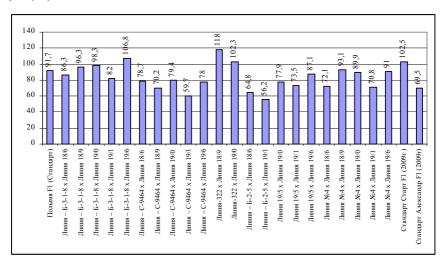


Рис. 2. Среднее значение массы плода лучших гибридных комбинаций за 2007-2009 гг., г.

Среди изучаемых образцов по массе товарного плода отличились две гибридные комбинации (Линия – Б-3-1-8 х Линия 19/6 и Линия-322 х Линия 18/9), масса плодов которых на 4,3-15,5 г больше, чем у лучшего из стандартов. Высоким значением признака «масса товарного плода» (93,1-102,3 г) характеризуются также гибриды Линия – Б-3-1-8 х Линия 18/9, Линия – Б-3-1-8 х Линия 19/0, Линия – 322 х Линия 19/0 и Линия – №4 х Линия 18/9.

Длительность хранения плодов (рис. 4) всех анализируемых гибридных комбинаций варьирует от 49 до 60 дней. Это на 7-18 дней превышает длительность хранения плодов наиболее лежкого гибрида-стандарта Александр.

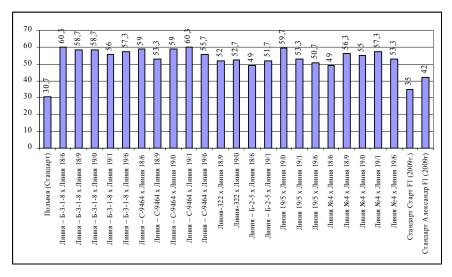


Рис. 3. Среднее значение продолжительности хранения плодов в нерегулируемых условиях среды лучших гибридных комбинаций за 2007-2009гг., кг/м²

Доля нетоварной части урожая у изучаемых образцов колебалась от 0,1 до 1,1 кг/м² (1-13,8 % от общей урожайности). Наибольшее количество нетоварных плодов отмечено У гибрида первого Линия – C-9464 Линия 19/6. В комбинациях скрешивания с X Линией-Б-3-1-8 в качестве материнского компонента, удалось получить самый низкий процент нетоварной урожайности (1-6,5 %).

По комплексу хозяйственно-ценных признаков на основании трехлетних испытаний как наиболее перспективные и сочетающие высокую про-

дуктивность с длительностью хранения плодов выделены 7 гибридных комбинаций: Линия — C-9464 х Линия 18/6, Линия — C-9464 х Линия 19/0, Линия — C-9464 х Линия 19/1, Линия-322 х Линия 18/9, Линия 19/5 х Линия 19/0, Линия 19/5 х Линия 19/6 и Линия №4 х Линия 19/0.

Среди изучаемых образцов максимальная ранняя урожайность $(2,7-3,4~\text{кг/m}^2)$ получена у F1 Линия C-9464 х Линия 19/1 и F1 Линия Б-2-5 х Линия 19/1. В среднем за три года исследований все изучаемые гибридные комбинации уступали стандартам по ранней урожайности на $2,0-4,2~\text{кг/m}^2$.

По товарной урожайности выделены четыре гибридные комбинации (F1 Линия C-9464 х Линия 18/6, F1 Линия C-9464 х Линия 19/0, F_1 Линия 322 х Линия 18/9 и F_1 Линия 19/5 х Линия 19/6), превосходящие лучший гибрид-стандарт Старт на 0,39-0,92 кг/м². Еще три гибридные комбинации (F_1 Линия C-9464 х Линия 19/1, F_1 Линия 19/5 х Линия 19/0 и F_1 Линия № 4 х Линия 19/0) на основании трехлетних данных сформировали более 12 кг/м² товарных плодов и практически не уступали стандартам.

Наиболее крупные плоды массой 93,1-118,0 г характерны для шести гибридных комбинаций (Линия Б-2-5 х Линия 19/6, Линия 322 х Линия 18/9, Линия Б-2-5 х Линия 18/9, Линия Б-2-5 х Линия 322 х Линия 19/0 и Линия № 4 х Линия 18/9). Наибольшая масса плода среди стандартов отмечена у F_1 Старт (102,5 г).

Длительность хранения плодов всех анализируемых гибридных комбинаций изменяется от 49 до 60 дней. Это на 7-18 дней превышает длительность хранения плодов наиболее лежкого гибрида-стандарта Александр.

По комплексу хозяйственно-ценных признаков на основании трехлетних испытаний как наиболее перспективные (сочетающие высокую продуктивность и сохранность плодов) выделены 7 гибридных комбинаций: Линия − С-9464 х Линия 18/6, Линия − С-9464 х Линия 19/0, Линия − С-9464 х Линия 19/1, Линия-322 х Линия 18/9, Линия 19/5 х Линия 19/0, Линия 19/5 х Линия 19/6 и Линия №4 х Линия 19/0.

Три образца переданы в Комитет по государственному испытанию и охране сортов растений под названием Сапсан, Касатик, Бубенчик.

Экономическая эффективность внедрения переданных в испытание гетерозисных гибридов томата составляет 35,0-37,0 млн. руб./га. пленочных теплиц. Получение гибридных семян с использованием стерильных форм позволяет сократить затраты ручного труда на гибридизацию в 10,6 раза, что в конечном счете снижает себестоимость семян и позволяет в кратчайшие сроки широко внедрить вышеуказанный гибрид в сельскохозяйственное производство и частный сектор Республики Беларусь. Повышенная лежкость плодов в нерегулируемых условиях среды позволяет

увеличить срок потребления свежих томатов на полтора-два месяца после завершения вегетации культуры.

На кафедре сельскохозяйственной биотехнологии и экологии УО «БГСХА» за последние 10 лет создано и районировано 8 гибридов и сортов для открытого грунта и пленочных теплиц. За 2009 год получено и внедрено в сельскохозяйственное производство Республики Беларусь следующее количество семян районированных сортов и гибридов томата: «Даша F1» — 0,22 кг, «Александр F1» — 0,65кг, Сорт «Зорка» — 8,7 кг, Сорт «Гарант» — 2,7 кг. Полученные семена позволят вырастить рассаду на общую площадь около 53 гектара открытого грунта и около 5,5 га пленочных теплиц. Расчет экономической эффективности показал, что использование полученных семян обеспечит в открытом грунте чистый доход 13003,0 тыс. р./га (Зорка), 8167,0 тыс. р./га (Гарант); в пленочных теплицах —34240,0 тыс. р./га (Александр F₁), 17120,0 тыс. р./га (Даша F₁).

Экологический эффект внедрения обеспечивается высокой устойчивостью сортов к фитофторозу (данные ГСИ), что дает возможность сокращения количества обработок фунгицидами (две-три обработки), а следовательно, уменьшения пестицидной нагрузки на окружающую среду и негативного воздействия на организм человека. Социальный эффект заключается в повышении заработной платы рабочим, занятым на уборке урожая, которые благодаря более дружному созреванию плодов могут увеличить количество выполненных нормосмен.