УДК 620.179.16 ВЛИЯНИЕ ОТХОДЯЩЕЙ МОДЫ НА ПОЛЕ КРАЕВЫХ ВОЛН, ВОЗБУЖДАЕМЫХ ПОВЕРХНОСТНОЙ ВОЛНОЙ НА ВЫСТУПЕ

А. Р. БАЕВ, М. В. АСАДЧАЯ, *О. С. СЕРГЕЕВА, Г. Е. КОНОВАЛОВ ГНУ «ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ НАН Беларуси» *ГУ ВПО «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ" Минск, Могилев, Беларусь

Значительное число объектов контроля имеют сложный рельеф поверхности — различные технологические выступы, радиусные переходы сопрягаемых поверхностей и пр. (например, валы прессового оборудования, вагонные оси колесных пар, сварные соединения). Нередко такая форма поверхности ограничивает возможности установки преобразователей и создает трудности при введении ультразвуковых колебаний в исследуемую область объекта. В таких случаях возможно использовать преобразователи рэлеевских волн в качестве первичного источника (приемника) поперечных волн, генерация которых происходит вследствие трансформации и рассеяния упругих мод на технологическом выступе.

Несмотря на имеющийся материал теоретических и экспериментальных исследований, вопросы трансформации поверхностных волн (ПАВ) и их рассеяния на выступах различной конфигурации и размеров недостаточно изучены. Данная задача представляет интерес не только для дефектоскопии, но и для других целей в технике ультразвуковых измерений. Так как изучаемые объекты представляют собой волноводы сложной геометрии, знание особенностей прохождения через них различных упругих мод может быть использовано для создания устройств приема и излучения.

В общем случае результирующее поле поперечных волн A_T , возбуждаемых пьезопреобразователем (ПЭП) волн Рэлея в объекте с выступом (рис. 1, а), имеет три составляющие: поперечная волна A_{TE} , трансформированная из волны Рэлея в области сопряжения поверхностей (ОСП) выступа; сопутствующая поперечная волна A_{TS} , возбуждаемая преобразователем одновременно с волной Рэлея; отходящая (боковая) поперечная волна A_{T*} , генерируемая головной волной, трансформированной из волны Рэлея на ОСП выступа.

Как показывают данные экспериментов (рис. 1, б), независимо от рабочей частоты ПЭП при $R_{\lambda}=R/\lambda_{\Pi AB}\approx 0$, где R – радиус ОСП, $\lambda_{\Pi AB}$ – длина волны ПАВ, для значений угла выступа $\gamma \leq 90^{\circ}$ зависимость $A_{T}(\alpha)$ имеет ярко выраженный минимум, достигающий десятков дБ, в окрестности характерного значения α_{min} . В частотном диапазоне 1–3 МГц положение минимума изменяется не более чем на 4–5° (при погрешности угловых измерений не более 1°). При наличии же радиусного перехода выступа ($R_{\lambda} \approx 3,5$ и более) глубокий локальный минимум поля и сопровождающие его быстро затухающие осцилляции (характерные для случая $R_{\lambda} \approx 0$) отсутствуют.

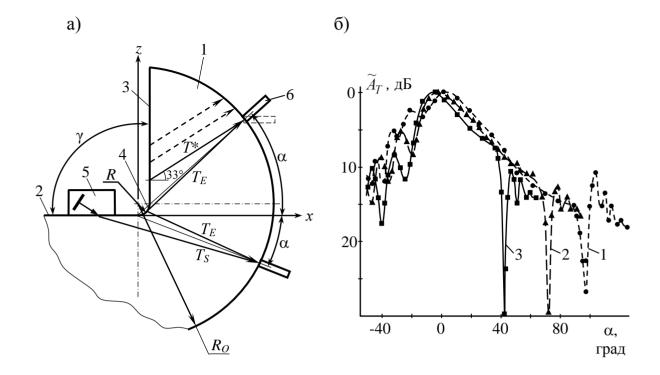


Рис. 1. Пояснение к рассматриваемой задаче (а) и поле поперечных волн в объеме выступа при R_{λ} <<1 (б): 1 – образец с цилиндрической приемной поверхностью; 2 – контактная поверхность; 3 – внутренняя грань выступа; 4 – ОСП; 5 – излучающий ПЭП; 6 – приемный преобразователь; б) γ =35° (1); 60° (2); 90° (3)

Наличие минимума может быть объяснено следующим образом. При трансформации ПАВ на выступе, наряду с рассеянной в области ОСП краевой поперечной модой, возбуждает краевая головная волна (L^*) , распространяющаяся вдоль передней грани выступа. Часть энергии этой волны трансформируется в отходящую поперечную T^* -моду [1], которая распространяется под углом ~33° к нормали передней грани (рис. 1, а) и приходит в точку приема вместе с T_E -модой. Указанному минимуму амплитуды A_T соответствует фазовый сдвиг между волнами T^* и T_E $\Delta \phi = \pi$. Предполагая, что один источник (T_E -волна) расположен в окрестности координаты x=z=0, а второй (T^* -волна) — на расстоянии s_{L^*} от оси образца на внутренней грани выступа, уравнение для оценки α_{min} имеет вид:

$$t_1 = \frac{R_O}{C_T} = t_2 + \frac{\Delta \varphi f}{2\pi} = \frac{s_{L^*}}{C_I} + \frac{s_{T^*}}{C_T} + \frac{\Delta \varphi f}{2\pi}, \tag{1}$$

где t_1 и t_2 — время прихода T_E и T^* -волн соответственно в точку приема (рис. 1, а); R_O — радиус образца; C_T , C_L — скорости поперечной и продольной волн; f — частота; $s_{L^*}=R_O[\sin\alpha_{min}-(1-\sin^2\alpha_{min})^{0.5}\mathrm{tg}33^\circ]$ — путь, проходимый головной волной вдоль внутренней грани выступа до точки излучения отходящей волны T^* ; $s_{T^*}=(R_O^2+l_1^2-2R_Ol_1\sin\alpha_{min})^{0.5}$ — путь, проходимый далее отходящей поперечной волной T^* в точку ее приема.

По-видимому, подобный эффект имеет место и при формировании поля поперечной волны, возбуждаемой малоапертурным ПЭП со стороны плоской поверхности в полуцилиндрическом образце [2]. При этом, наряду с основной поперечной волной, возбуждается и поперечная отходящая мода, источником которой является сопутствующая головная волна. Результатом взаимодействия этих мод является обнаруженный авторами максимум, а не минимум поля, наблюдаемый в настоящей работе. По-видимому, это различие вызвано особенностями механизма возбуждения мод, обуславливающими другой фазовый сдвиг между ними.

На ход зависимости $A_T(\alpha)$ оказывают влияние ослабление с расстоянием головной волны [1], являющейся источником отходящей моды, размеры образца, частота волны и длительность импульса, а также наклон волнового вектора T^* -моды относительно нормали к поверхности приема. Поле T^* -моды преимущественно зависит от пространственного распределения и силы его источников на поверхности передней грани выступа, определяемых амплитудой и законом ослабления головной волны от длительности импульса, а также частоты волны и геометрии объекта, определяемых безразмерным параметром χ . Экспериментальные исследования зависимости амплитуды головной волны A_L^* от γ показали, что $A_L^*(\gamma)$ достигает максимума при γ =90°. Установлено также, что головная волна максимальной интенсивности генерируется при радиусе ОСП R_λ \rightarrow 0, а с ростом R_λ ее амплитуда быстро падает, уменьшаясь более чем на порядок при R_λ \sim 1.

На основании хода зависимостей $A_T(\alpha)$ в окрестности локального минимума можно оценить вклад в результирующее поле отходящей T^* -моды. Так, например, для f=1,8 МГц амплитуда T^* -моды в окрестности α_{min} всего на 8-10 дБ меньше амплитуды максимума исследуемой функции. При значениях γ отличных от 90° , влияние отходящей моды на результирующее поле ослабевает.

Тем не менее, очевидно, что при проведении ультразвукового контроля или измерений (при $\gamma > 90^\circ$) пренебрегать влиянием отходящей поперечной моды недопустимо. В некоторых случаях снижение ее влияния может быть достигнуто путем уменьшения угла выступа или модификации поверхности внутренней грани выступа.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Ермолов, И. Н.** Исследование ослабления ультразвуковых головных волн с расстоянием / И. Н. Ермолаев, Н. П. Разыграев, В. Г. Щербинский // Дефектоскопия. -1979. -№ 1. C. 37–40.
- 2. Акустические поля малоапертурных преобразователей. Поперечные волны, излучаемые прямоугольным источником нормальной силы /А. М. Люткевич [и др.] // Контроль. Диагностика. 2004. N = 4. C. 3 = 8.