УДК 620.179.14 ОСОБЕННОСТИ НАМАГНИЧИВАНИЯ ЧУГУНОВ ПОД ВЛИЯНИЕМ ВНУТРЕННЕГО КОЭФФИЦИЕНТА РАЗМАГНИЧИВАНИЯ

С. Г. САНДОМИРСКИЙ ГНУ «ОБЪЕДИНЕННЫЙ ИНСТИТУТ МАШИНОСТРОЕНИЯ НАН Беларуси» Минск, Беларусь

Магнитные свойства чугуна зависят от структуры металла. Это позволяет использовать результаты их измерения для контроля структуры и прочностных свойств чугунных изделий, определяет важность исследований намагничивания чугуна. Намагничивание чугуна в замкнутой магнитной цепи отличается от намагничивания стали размагничивающим влиянием немагнитных графитовых включений, которое характеризуют внутренним коэффициентом *N*_{вн} размагничивания. Даны количественные оценки изменений соотношений между магнитными параметрами чугунов по сравнению с соотношениями для сталей, обусловленных влиянием графитовых включений разной формы. Проведен анализ возможности сортировки чугунов с разной структурой друг от друга и от сталей по результатам магнитных измерений.

В магнитной структуроскопии используют измерения остаточной намагниченности и максимальной магнитной проницаемости материала изделий. Поэтому наибольший интерес представляет определение $N_{\rm BH}$ чу-гунов на нисходящей ветви предельной петли магнитного гистерезиса в области остаточной намагниченности и на основной кривой намагничивания в области максимальной магнитной проницаемости.

Оценка внутреннего коэффициента размагничивания чугунов по результатам измерения их остаточной намагниченности проведена в [1]. Анализ намагничивания чугуна, как однородно намагничиваемого тела с размагничивающим фактором N_{вн.} показал, что N_{вн} чугунов на нисходящей ветви предельной петли магнитного гистерезиса в области остаточной намагниченности обратно пропорционален намагниченности M_s их технического насыщения и прямо пропорционален коэрцитивной силе H_c и параметру у. По результатам статистического анализа соотношений между остаточной намагниченностью и M_s сталей и чугунов с разной формой включений определены значения параметра у для высокопрочного $(\gamma \approx 0.983)$ и серого $(\gamma \approx 1.364)$ чугунов. Установлено, что $N_{\rm BH}$ литого серого чугуна на нисходящей ветви предельной петли гистерезиса в области остаточной намагниченности в 18 раз меньше его N_{вн} на основной кривой намагничивания в сильном поле. По результатам статистической обработки зависимостей остаточной намагниченности сталей и чугунов от их M_s установлено, что остаточная намагниченность высокопрочного чугуна в 1,32 раза, а серого чугуна – в 1,49 раза меньше, чем остаточная намагниченность стали с той же M_s . Этот результат можно использовать для разработки методов отсортировки чугунных изделий с различной формой графитовых включений от сталей и друг от друга.

Та же методика использована для аналитического описания связи максимальной магнитной проницаемости μ_{mt} чугунов с их H_c , анализа отличий этой связи для сталей и чугунов, оценки значений μ_{mt} чугунов различной структуры по результатам измерения их H_c [2]. Показано, что, если максимальная магнитная проницаемость μ_m сталей может быть оценена по их H_c по формуле (размерность $H_c - \kappa A/m$) [3]

$$\mu_{m}(H_{c}) \approx 1 + 35000 \cdot e^{-4H_{c}^{0.285}}, \qquad (1)$$

то для чугунов эта зависимость имеет вид:

$$\mu_{mt}(H_c) \approx \frac{\mu_m(H_c)}{1+k} \quad , \tag{2}$$

где *k* – коэффициент, зависящий от формы графитовых включений.

На рис. 1 расчеты зависимости $\mu_m(H_c)$ по (1) и зависимости $\mu_{mt}(H_c)$ по (2) при k = 1,37 сопоставлены с экспериментом для 203 чугунов с магнитизменяющимися ными параметрами. В пределах $40 \le \mu_{mt} \le 2120$ и 120 А/м $\le H_c \le 6078$ А/м. Это практически весь возможный для чугунов интервал изменения H_c и µ_{mt}. На рис. 1 для наглядности представлены результаты для чугунов с $H_c \le 1.5$ кА/м. Значение k = 1.37обеспечивает наименьшее отклонение между расчетом по (2) и экспериментом. Данные свидетельствуют о физически верном описании корреляционной связи между μ_{mt} и H_c уравнением (2) при k = 1,37. *R* в линейном уравнении регрессии μ_{mt} (расчетное) = μ_{mt} (экспериментальное) составил 0,926. Средняя квадратическая ошибка σ расчета по (2) при k = 1.37 составила $\sigma \approx 130$.

Рис. 1. Зависимость максимальной магнитной проницаемости μ_{mt} чугунов от их H_c : х, +, \Box и \circ – экспериментальные результаты соответственно для серого, высокопрочного, ковкого и белого чугунов; Δ и • – результаты расчета μ_{mt} по формулам (1) и (2) при k = 1,37

Сопоставление зависимости $\mu_m(H_c)$, рассчитанной по (1), и зависимости $\mu_{mt}(H_c)$, рассчитанной по (2) при k = 1,37, показало, что при одинаковой $H_c \ \mu_{mt}$ чугунов составляет в среднем 42 % от μ_m сталей. Такая разница в соотношениях между H_c и максимальной магнитной проницаемостью сталей и чугунов может быть использована для отсортировки сталей и чугунов друг от друга.

В [2] показано, $N_{\rm BH}$ чугунов в их магнитном состоянии, соответствующем области максимальной магнитной проницаемости μ_{mt} на основной кривой намагничивания, может быть оценен величиной

$$N_{_{\theta H}} \approx k / [(1+k)\mu_{_{mt}}]. \tag{3}$$

Анализ различия в значениях коэффициента *k* при расчете μ_{mt} по (2) для чугунов с различной формой графитовых включений не выявил статистически значимого различия в значениях $k \approx 1,71$ при раздельном анализе зависимостей $\mu_{mt}(H_c)$ для белого (с преобладанием углерода в связанном состоянии) и серого (с пластинчатой формой графитовых включений) чугунов. Но для чугунов с компактной формой графитовых включений (высокопрочного и ковкого) значения k существенно ниже и составляют соответственно 1,02 и 0,83. Этот результат также может быть использован для разработки методов отсортировки чугунных изделий с различной формой графитовых включений не только от сталей, но и друг от друга. Так, среднее значение произведения $\mu_{mt}H_c(\kappa A/M)$ для 117 чугунов с пластинчатой формой включений составил 265 при $\sigma = 89$. Для 48 чугунов со сферической формой включений среднее значение произведения $\mu_{mt} H_c$ (кА/м) составило 351,5 при σ = 115. Для 313 разных сталей, использованных для анализа взаимосвязи μ_m и H_c в [3], среднее значение произведения $\mu_m H_c$ (кА/м) составило 526,4 при $\sigma = 132$.

В работе также выявлены отличия в связи μ_m с коэрцитивной силой H_c и остаточной намагниченностью для сталей и чугунов.

СПИСОК ЛИТЕРАТУРЫ

1. Сандомирский, С. Г. Оценка внутреннего коэффициента размагничивания чугунов по результатам измерения их остаточной намагниченности / С. Г. Сандомирский // Металлы. – 2013. – № 3. – С. 88–94.

2. Сандомирский, С. Г. Оценка максимальной магнитной проницаемости чугунов по коэрцитивной силе / С. Г. Сандомирский // Заводская лаборатория. Диагностика материалов. – 2012. – Т. 78. – № 12. – С. 39–44.

3. Сандомирский С. Г. Оценка максимальной магнитной проницаемости сталей по коэрцитивной силе / С. Г. Сандомирский // Заводская лаборатория. Диагностика материалов. – 2011. – Т. 77. – № 3. – С. 35–38.

E-mail: sand@iaph.bas-net.by