УДК 620.179.14 КОНТРОЛЬ НИКЕЛЕВЫХ ПОКРЫТИЙ КАМЕР СГОРАНИЯ РАКЕТНЫХ ДВИГАТЕЛЕЙ ПОСЛЕ НАНЕСЕНИЯ ХРОМОВЫХ МАГНИТОДИНАМИЧЕСКИМ МЕТОДОМ ТОЛЩИНОМЕТРИИ

А. А. ЛУХВИЧ, А. Л. ЛУКЬЯНОВ, О. В. БУЛАТОВ, *М. Н. ПОЛЯКОВА, *В. В. МОСЯКИН ГНУ «ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ НАН Беларуси» *ОАО «МЕТАЛЛИСТ-САМАРА» Минск, Беларусь; Самара, Россия

Камера сгорания любого ракетного двигателя, в общем случае, представляет собой ферромагнитный корпус с бронзовой прослойкой, на которую гальваническим методом наносятся никель и хром, обеспечивающие тепловую защиту камеры, при этом последовательно осуществляется контроль толщины никеля и затем хрома. В работе обоснована возможность определения толщины никеля под хромом магнитодинамическим методом на любой стадии изготовления или испытаний камеры (включая приемку).

Магнитодинамический метод является оптимальным при контроле никелевых покрытий в диапазоне 0...1000 мкм [1]. При этом решена проблема минимизации или устранения дополнительной погрешности, обусловленной вариацией структурных (магнитных) свойств никеля, за счет использования преобразователя, первичное намагничивающее поле которого обеспечивает в информативной зоне намагниченность никеля, близкую к его намагниченности насыщения [2]. Также решен вопрос устранения влияния на точность измерений намагниченности корпуса камеры [3].

При решении рассматриваемой задачи возникает дополнительная погрешность, обусловленная влиянием хрома на информативный сигнал при контроле толщины никеля. На практике толщина хрома меняется в диапазоне 50–200 мкм, никеля под хромом – 200–700 мкм. Рассмотрим в какой мере изменится при этом намагниченность никеля под хромом и, следовательно, дополнительная погрешность, обусловленная структурной вариацией никеля.

Данные в табл. 1 получены методом конечных элементов для магнитодинамического преобразователя, создающего достаточно сильное намагничивающее поле [1, 2]. В этом случае намагниченность центральной области информативной зоны, преимущественно формирующей информативный сигнал, близка к намагниченности насыщения никеля и даже после нанесения толстослойного хрома практически не меняется. Это свидетельствует о том, что при любой толщине хрома, структурная вариация никеля также не оказывает заметного влияния на результаты контроля, следовательно, вышеуказанная погрешность несущественна.

Табл. 1. Намагниченность центральной области информативной зоны

Толщина	Толщина	Намагничен-	Толщина	Намагничен-
никеля, мкм	хрома, мкм	ность, кА/м	хрома, мкм	ность, кА/м
200	0	498,7	150	487,5
700	0	469,3	150	455,3

Рис. 1 показывает, что сигнал вышеуказанного преобразователя незначительно зависит от толщины хрома. Следовательно, в некоторых ее пределах (до $\sim\!200$ мкм) можно контролировать толщину никеля с небольшой погрешностью.

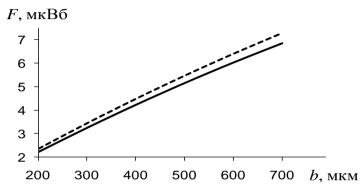


Рис. 1. Расчетная зависимость информативного сигнала F от толщины b никеля до и после нанесения хрома толщиной 150 мкм (штриховая и сплошная кривые соответственно)

На рис. 2 приведена погрешность Δ_{sum} , обусловленная намагниченностью корпуса камеры и хромом, при вариации толщин прослойки в диапазоне 2–10 мм и хрома 0–150 мкм. Видно, что по мере возрастания обеих толщин, влияние намагниченности корпуса существенно снижается, однако, в целом ее компенсация по-прежнему необходима.

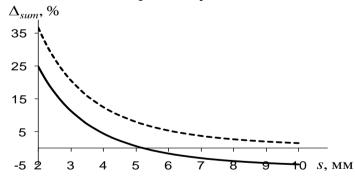


Рис. 2. Расчетная зависимость погрешности Δ_{sum} от толщины s неферромагнитной прослойки при толщине никеля 400 мкм до и после нанесения хрома толщиной 150 мкм (штриховая и сплошная кривые соответственно)

По результатам комплексных исследований специально для камер сгорания разработан магнитодинамический толщиномер МТДП-1, обеспечивающий контроль никелевых покрытий толщиной до 700 мкм; под хромовыми толщиной до 150 мкм с основной погрешностью до \pm (1,5 + 10 %) мкм. Прибор сертифицирован в Российской Федерации (Госреестр РФ № 50930-12, свидетельство № 47796). Его эффективность

подтверждается табл. 2, в которой приведены данные, полученные после порезки сборочной единицы Б-400, изготовленной ОАО «Металлист-Самара»; толщины хрома, никеля и прослойки определены методом металлографии.

Табл. 2. Результаты контроля прибором МТДП-1 толщины никеля под хромом, полученные на фрагментах сборочной единицы Б-400

№ точки	1	2	3	4	5	6	7			
Сечение А (толщина прослойки от 7,1 до 7,2 мм)										
Толщина хрома, мкм	110	120	125	115	95	95	100			
Толщ. ник. (металл.), мкм	450	440	420	420	430	445	450			
Показание прибора, мкм	442	448	444	428	413	416	432			
Погрешность, %	-1,8	+1,8	+5,7	+1,9	-4,0	-6,5	-4,0			
Сечение Б (толщина прослойки от 5,3 до 5,6 мм)										
Толщина хрома, мкм	95	85	85	90	90	100	100			
Толщ. ник. (металл.), мкм	385	405	385	365	350	340	400			
Показание прибора, мкм	392	405	387	368	345	336	354			
Погрешность, %	+1,8	0	+0,5	+0,8	-1,4	-1,2	-11,5			
Сечение В (толщина прослойки от 6,4 до 6,5 мм)										
Толщина хрома, мкм	100	105	105	105	85	85	90			
Толщ. ник. (металл.), мкм	410	370	370	385	385	395	400			
Показание прибора, мкм	393	390	387	379	358	361	373			
Погрешность, %	-4,1	+5,4	+4,6	-1,6	-7,0	-8,6	-6,8			
Сечение Г (толщина прослойки от 4,7 до 4,8 мм)										
Толщина хрома, мкм	115	110	120	115	95	95	105			
Толщ. ник. (металл.), мкм	460	440	435	460	460	450	475			
Показание прибора, мкм	437	442	438	448	421	407	432			
Погрешность, %	-5,0	+0,5	+0,7	-2,6	-8,5	-9,6	-9,1			

Из табл. 2 видно, что при вариации в контрольных сечениях А-Г толщины хрома, никеля, прослойки в диапазонах (85–125), (340–475) мкм, (4,7–7,2) мм погрешность контроля практически не выходит за пределы ± 10 %. Прибор МТДП-1 обеспечивает контроль никелевых покрытий камер сгорания под хромовыми с приемлемой точностью.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Лухвич, А. А.** Возможности магнитодинамического метода контроля толщины двухслойных покрытий / А. А. Лухвич, О. В. Булатов // Дефектоскопия. -2008. -№ 10. -C. 26–34.
- 2. **Лухвич, А. А.** Возможности магнитодинамического метода контроля толщины покрытий с неоднородными свойствами / А. А. Лухвич, О. В. Булатов, А. Л. Лукьянов // Дефектоскопия. 2009. № 11. С. 46–53.
- 3. **Лухвич, А. А.** Контроль толстослойных никелевых покрытий на двухслойных (неферромагнетик-ферромагнетик) основаниях магнитодинамическим методом толщинометрии / А. А. Лухвич, О. В. Булатов, А. Л. Лукьянов // Дефектоскопия. -2014. № 4. С. 3-12.

E-mail: lab1@bas-net.by