УДК 535.31; 621.372 К ПРОБЛЕМЕ ОТРАЖАТЕЛЬНОЙ СПЕКТРОФОТОМЕТРИИ НЕОДНОРОДНОГО СЛОЯ

С. О. ПАРАШКОВ, ^{*}К. Н. КРИВЕЦКИЙ, А. Б. СОТСКИЙ, И. С. ДЗЕН, *^{*}Л. И. СОТСКАЯ УО «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. А. А. Кулешова» *ООО «ЭССЕНТОПТИКС» **ГУ ВПО «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Могилев, Минск, Беларусь

Актуальной проблемой, возникающей при создании тонких пленок, является неразрушающий контроль неоднородности их свойств по толщине. Один из распространенных методов оптической диагностики таких пленок – спектрофотомерия. В работах А. В. Тихонравова с соавторами разработан метод восстановления профиля показателя преломления пленок n(y) путем измерения и обработки спектра их отражательной способности $R(\lambda)$ при нормальном падении света на поверхность пленки. Однако для повышения точности определения n(y) представляет интерес решение обратной оптической задачи по обработке функции $R(\lambda)$ в случае наклонного падения поляризованного света на пленку, которое и рассматривается в настоящей работе.

Авторы используют метод наименьших квадратов с целевыми функциями

$$F_{s,p}(p_1,...,p_l) = \sum_{i=1}^{N} \sum_{j=1}^{M} \left[(R_{s,p}^{(e)})_{ij} - R_{is,p}(\lambda_j, p_1,...,p_l) \right]^2;$$

$$F_{sp}(p_1,...,p_l) = F_s(p_1,...,p_l) + F_p(p_1,...,p_l),$$

где *i* – номер угла падения света θ_i ; *j* – номер длины волны излучения; $(R_{s,p}^{(e)})_{ij}$ – экспериментальные данные для энергетических коэффициентов отражения волн *s* и *p* поляризации. Функции $R_{is,p}(\lambda_j, p_1,...,p_l)$ рассчитываются в когерентном приближении с помощью известных рекуррентных соотношений. Величины p_i – подлежащие определению толщина пленки (i=1) и параметры, описывающие зависимости $n(\lambda, y)$, $k(\lambda, y)$ где ($k(\lambda, y)$ - показатель поглощения пленки). Данные параметры представляют собой коэффициенты разложений

$$n(\lambda, y) = \sum_{i=0}^{n} \sum_{j=0}^{m} n_{ij} L_i(\lambda) Y_j(y), \ k(\lambda, y) = \sum_{i=0}^{n} \sum_{j=0}^{m} k_{ij} L_i(\lambda) Y_j(y),$$

где $L_i(\lambda)$ и $Y_j(y)$ – полиномы Лагранжа степеней n, и m, нули которых совпадают с нулями полиномов Чебышева степеней n+1 и m+1, заданных

на экспериментальном промежутке длин волн и в пределах толщины пленки $-p(1) \le y \le 0$. Таким образом l = 2(n+1)(m+1) + 1.

Ниже представлены результаты обработки экспериментальных спектров $R_{s,n}^{(e)}(\lambda)$ для пленки ZrO_2 толщиной около 150 нм, напыленной на подложку из стекла К8. Измерения выполнены на автоматизированном спектрофотометре Photon RT при N = 4 ($\theta_1 = 30^\circ$, $\theta_2 = 40^\circ$, $\theta_3 = 50^\circ$, $\theta_{4} = 60^{\circ}$) в диапазоне длин волн 400нм $\leq \lambda \leq 880$ нм с шагом $\Delta \lambda = 2$ нм. Результаты расчетов соответствуют n = 12 и различным значениям m. Они получены путем минимизации целевой функции $F_{sp}(p_1,...,p_l)$ градиентным поглощения методом В приближении отсутствия В пленке $(k(\lambda, y) = k_{ij} = 0, l = (n+1)(m+1)+1)$. Зависимости $n(\lambda)$ и $k(\lambda)$ для подложки брались из известных дисперсионных таблиц.

На рис.1 представлены экспериментальные и расчетные спектры энергетических коэффициентов отражения.

Рис. 1. Спектры отражательной способности пленки ZrO_2 для волн s – (a) и р – (б) поляризации при $\theta_1 = 30^\circ$. Кривые 1 - $R_{s,p}^{(e)}(\lambda)$, 2 - $R_{0s,p}(\lambda)$, 3, 4, 5, 6 - $R_{1,2,3,4s,p}(\lambda)$

Как видно из рис. 1, зависимости $R_{s,p}^{(e)}(\lambda)$ и $R_{is,p}(\lambda)$ при i = 1, 2, 3, 4 практически совпадают. Однако зависимости 2, рассчитанные в рамках модели однородной пленки, существенно отклоняются от эксперимента, что указывает на неоднородность пленки.

На рис. 2 приведены результаты восстановления профиля показателя преломления пленки n(y) по длине волны $\lambda = 400$ нм.

Рис. 2. Восстановление профиля показателя преломления пленки n(y) при различных порядках интерполяционного полинома $Y_j(y)$. Номера кривых совпадают с порядком полинома j

Согласно рис. 2, результат восстановления n(y) получился неоднозначным. В такой ситуации оптимальное значение j может быть выбрано в соответствии с критерием минимума целевой функции. Этот критерий иллюстрируется табл. 1.

Табл. 1. Зависимость целевой функции и восстановленной толщины пленки от порядка интерполяционного полинома *m*

т	F_{sp}	$-p_1, \mathcal{HM}$
0	$6,20\cdot10^{-2}$	150,3
1	1,21.10-3	148,4
2	5,31.10-4	141,2
3	5,79.10-4	139,4
4	$1,92 \cdot 10^{-3}$	136,8

Согласно табл. 1 оптимальный порядок m = 2. Эффективность рассмотренного критерия подтверждена в вычислительных экспериментах по восстановлению функций $n(\lambda, y)$ для различных пленок.