УДК 535.51 ПЕРЕХОДНЫЕ СЛОИ В ПДП – СТРУКТУРЕ

С. О. ПАРАШКОВ, Н. И. СТАСЬКОВ, ^{*}А. В. ХОМЧЕНКО, *Л. И. СОТСКАЯ, А. В. ШИЛОВ, ^{**}Н. А. КРЕКОТЕНЬ УО «МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. А. А. Кулешова» *ГУ ВПО «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» **НТЦ «БЕЛМИКРОСИСТЕМЫ» ОАО «ИНТЕГРАЛ» Могилев, Минск, Беларусь

Широкое применение в электронной промышленности находит кремниевая двухслойная ПДП структура «поликристаллический кремний (pSi) – диоксид кремния (SiO₂) – монокристаллический кремния (cSi)». На рабочие параметры приборов, созданных на основе таких структур, существенное влияние оказывают переходные области между слоями и подложкой (рис. 1, а) [1].

Рис. 1. Оптическая модель отражающей системы (а) и фотография скола структуры $pSi - SiO_2 - cSi$ (б) на растровом электронном микроскопе РЭМ S-4800 фирмы Hitachi

В данной работе обсуждаются решения обратных оптических задач при исследовании серийно изготовленной pSi – SiO₂ – cSi структуры методами спектрофотометрии и многоугловой эллипсометрии, допускающих наличие переходных слоев. Рассматривались две модели слоев - плоский слой с параметрами d, n, k и слой диполей с поляризуемостью α_{zj} [2]. Вторая модель использовалась для исключения влияния переходных слоев без детализации их внутренней структуры. Это позволяет сократить количество рассчитываемых параметров при численном решении обратных оптических задач. В качестве подложки использовался кремний КДБ 12 с кристаллографической ориентацией (III). Из рис. 1, б можно оценить толщины слоев pSi (0,44 µm) и SiO₂ (0,10 µm). Спектры $R_s(\lambda)$, $R_p(\lambda)$ и $R_p(\lambda)/R_s(\lambda)$ образцов при углах падения от 8° до 60° измеряли на спектрофотометре «Photon RT» (ООО «ЭссентОптикс») в области от 0,4 до 0,8 µm (рис. 2, кривые 1, $\varphi_{01} = 60^\circ$). Шаг изменения λ составлял 0,5 нм по углу $\varphi_{01} - 10^\circ$. Точность измерения коэффициентов R – не ниже 0,1 %.

Рис. 2. Измеренные и рассчитанные спектры структуры $pSi - SiO_2 - cSi$ для s- и p-поляризации света

По положению максимумов и минимумов методом огибающих интерференционных спектров была определена толщина слоя pSi

$$d_{pSi} = \frac{(2p\pi + \alpha_{13}(\lambda_v) - \alpha_{13}(\lambda_{v+p}) - \alpha_{01}(\lambda_v) + \alpha_{01}(\lambda_{v+p}))\lambda_v\lambda_{v+p}}{4\pi(\lambda_{v+p}n_1(\lambda_v) - \lambda_vn_1(\lambda_{v+p}))}$$

которая оказалась равной 0,425 µm.

При этом спектры $R_e(\lambda)$ структуры pSi – SiO₂ – cSi измеряли в воздухе на спектрофотометре «MPV – SP» (Leica, Германия) в диапазоне длин волн от 0,4 до 0,8 µm.

Рис. 3. Измеренные и рассчитанные спектры $\Delta(\phi)$, $\psi(\phi)$ структуры

Эллипсометрические углы Δ_e и Ψ_e для образцов измерялись на стандартном эллипсометре ЛЭФ- 2 ($\lambda = 632,8$ нм) при углах падения от 60° до 77° с достаточным шагом для каждой структуры (рис. 3, дискретные точки). В табл. 1 и 2 приведены результаты решения обратных оптических задач, по которым рассчитаны соответствующие кривые на рис. 2 и 3. При этом учитывалась дисперсия оптических характеристик пленок и подложки, а переходные области имели постоянные параметры.

Спектрофотомерия						
i	$d_i^{},\mu\mathrm{m}$	$n_i(0, 0.6328)$				
1	0,011	1,63–0,2 <i>i</i>				
2	0,411	4,028–0,02 <i>i</i>				
3	8· 10 ⁻³	2,65–0,26 <i>i</i>				
4	0,1	1,451				
5	0,012	2,7–0,25 i				
6	-	3,841–0,041 i				

Табл. 1. Результаты решения обратных оптических задач

Табл. 2. Результаты решения обратных оптических задач

Многоугловая эллипсометрия							
1	-0,190	10-4	7	1,68 · 10-6	10 ⁻⁹		
2	-1,027	10-6	8	3,89	10-4		
3	-0,974	10-6	9	0,031	10-4		
4	3,974	10 ⁻⁴	10	0,421	10 ⁻³		
5	0,0289	10-5	11	0,104	10 ⁻³		
6	1,457	10-5	_	-	-		

Таким образом, результаты исследований свидетельствуют о том, что серийно изготовленные структуры $pSi - SiO_2 - cSi$ содержат неоднородные переходные области, параметры которых зависят от условий получения пленок pSi и SiO₂. Спектральные методы более чувствительны к наличию переходных областей и для их учета необходимо определять дисперсионные функции материалов всех слоев в структуре. При этом однопараметрическая модель переходного слоя с поляризуемостью α_{zj} позволяет исключить его влияние на результаты определения толщины и оптических параметров структуры «полупроводник – диэлектрик – полупроводник».

СПИСОК ЛИТЕРАТУРЫ

1. Беляева, А. И. Границы раздела слоев и шероховатость в многослойной кремниевой структуре / А. И. Беляева, А. А. Галуза, С. Н. Коломиец // Физика и техника полупроводников. – 2004. – Т. 38. Вып. 9. – С. 1050–1055.

2. Учет влияния естественного поверхностного слоя при исследовании кремниевых пластин методом спектральной эллипсометрии / Н. И. Стаськов [и др.] // Проблемы физики, математики и техники. – 2012. – № 1(10). – С. 1–5.