УДК 620.179.1+537.3222.11 ТОЛЩИНОМЕТРИЯ НИКЕЛЕВЫХ ПОКРЫТИЙ НА СТАЛИ ПРИ РАЗНОМ РАДИУСЕ СФЕРИЧЕСКИХ ОКОНЧАНИЙ ЭЛЕКТРОДОВ

В. И. ШАРАНДО, А. А. ПОЛОНЕВИЧ ГНУ «ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ НАН Беларуси» Минск, Беларусь

Одной из основных задач термоэлектрической толщинометрии покрытий [1, 2] является оптимизация чувствительности по контролируемому диапазону и повышение её в области больших толщин. Важнейшее значение при этом имеет размер контакта нагреваемого электрода с поверхностью изделия. В работе [3], посвящённой контролю никеля на стали Ст20, показано, что зависимости термоЭДС от толщины покрытия изменяются при изменении как площади плоских площадок на окончаниях нагреваемых электродов, так и усилия прижима сферического электрода к изделию. Это связано с перераспределением температурного поля в поверхностном слое изделия и изменением относительного вклада в суммарную ЭДС источников на границах электрод-покрытие и покрытие-основание.

Площадь контакта зависит также от радиуса сферы на окончании электрода. Причём здесь следует говорить об эффективном пятне нагрева, учитывающем изменение условий теплопередачи (теплопроводность воздуха, характеристики излучения и поглощения, конвекции) с изменением конфигурации тонкого зазора между электродом и покрытием в зоне непосредственной близости к краю механического контакта.

В данной работе исследовано влияние радиуса закругления окончания нагреваемого термоэлектрического электрода на градуировочные зависимости при контроле никелевых покрытий на стали Ct20 в диапазоне толщин $0 \div 100$ мкм. Целью исследований было определение условий повышения чувствительности.

При исследованиях использован термоэлектрический прибор типа ПИТ [4] с преобразователем, обеспечивающим возможность смены электродов; последние выполнялись из латуни с окончаниями в виде впрессованных стальных либо твердосплавных сферообразных элементов. Разность температур между нагреваемым электродом и контролируемым образцом составляла $50\,^{\circ}$ С. Усилие прижима электрода $3\,^{\circ}$ Н. Размер образцов $40\times40\times8$ мм, на верхнюю плоскость нанесено гальваническое покрытие.

В табл. 1 приведены значения измеренной термоЭДС в зависимости от толщины покрытия при радиусах R контактных окончаний электродов: 0,05 мм (закалённая стальная игла); 0,5 мм (твердосплавный шарик) и 1,5 мм (закалённый шарик из стали ШХ15). Включены результаты измерений на материале основания без покрытия и на массивном образце никеля.

Табл. 1. Зависимость термоЭДС от толщины никеля на стали Ст20 при разном радиусе R сферического окончания электрода

Толщина покрытия,	Измеренное значение термоЭДС, мкВ,		
МКМ	R = 0.05 MM	$R = 0.5_{MM}$	$R = 1,5_{MM}$
0	+137	-245	+183
6,4	+86	-489	+81
10,9	+65	-585	+43
18,5	+44	-690	+5
27,3	+29	-750	-22
40,0	+20	-796	-51
57,3	+15	-820	-69
74,8	+14	-837	-81
93,0	+14	-845	-88
никель	-3	-996	-218

Табл. 1 иллюстрирует различную чувствительность к толщине покрытий при разных радиусах электродных окончаний. Однако сравнение полученных градуировок между собой и с рисунками работы [3], в которой использовались электроды из одного материала (Ст45), затруднено из-за большой разницы числовых значений при переходе от электрода к электроду, связанной с разницей термоэлектрических и теплофизических характеристик их материалов. В конструкции прибора эти вопросы решаются регулировкой коэффициента усиления и введением смещающих напряжений. Для получения унифицированных результатов проведено нормирование данных для каждого из электродов в границах диапазона показаний термоЭДС от материала основания до материала покрытия по формуле:

$$E_{\text{hop}} = (E - E_{\text{Ni}}) / (E_{\text{och.}} - E_{\text{Ni}}),$$

где $E_{\text{нор}}$ — нормированное значение термоЭДС; E — измеренное показание термоЭДС на данной толщине покрытия; $E_{\text{осн.}}$ — показание на материале основания без покрытия; E_{Ni} — показание на массивном образце никеля.

На рис. 1 изображена зависимость нормированных значений термо-ЭДС $E_{\text{нор}}$ от толщины никелевого покрытия на стали Cт20 при указанных выше радиусах окончаний электродов. Рисунок показывает, что при уменьшении радиуса окончаний электродов происходит возрастание чувствительности в начале диапазона толщин покрытий и её уменьшение — в конце. Для электродов с радиусом окончаний 0,05 мм контроль толщин покрытий свыше 60 мкм становится практически невозможным. Для шарика радиусом 1,5 мм чувствительность в конце диапазона является наибольшей, начальная чувствительность также достаточно высока. Из полученных результатов следует, что электроды с такой конфигурацией окончаний должны использоваться при конструировании толщиномеров.

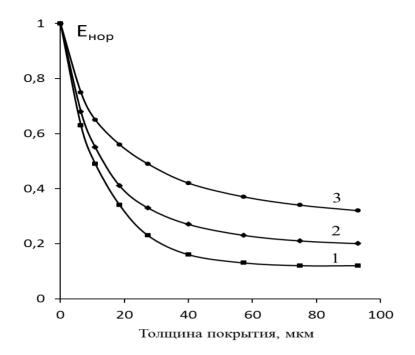


Рис. 1. Зависимость нормированных значений термо ЭДС $E_{\text{нор}}$ от толщины никелевого покрытия на стали Cт20 при разном радиусе сферического окончания электрода: 1-0.05 мм; 2-0.5 мм; 3-1.5 мм.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Суворов,** Л. М. Термоэлектрический метод измерения толщины гальванических покрытий / Л. М. Суворов // Заводская лаборатория. 1964. —Т. 30 № 8. С. 959—962.
- 2. **Шарандо, В. И.** Перспективы термоэлектрического метода в исследовании свойств металлов и поверхностных слоев / В. И. Шарандо // Достижения физики неразрушающего контроля: сб. науч. тр., посвященный 40-летию ИПФ НАН Беларуси. Минск, 2003. С. 99–118.
- 3. **Шарандо, В. И.** Влияние формы электродов и контактной нагрузки при термоэлектрическом контроле никеля на стали / В. И. Шарандо // Современные методы и приборы контроля качества и диагностики состояния объектов: материалы междунар. науч.-техн. конф. Могилев: Белорус.-Рос. ун-т, 26–27 сент. 2012 г. Могилев: Белорус.-Рос. ун-т, 2012. С. 224–226.
- 4. Приборы термоэлектрические типа ПИТ / Ин-т прикл. физ. НАН Беларуси [Электронный ресурс]. 2012. Режим доступа: http://iaph.bas-net.by/~lab1/ru/pit.html. Дата доступа: 22.05.2014.

E-mail: lab1@iaph.bas-net.by