Семенюк Слава Денисович, д-р техн. наук, заведующий кафедрой «Строительные конструкции, здания и сооружения», Белорусско-Российский университет, г. Могилев

Москалькова Юлия Георгиевна, ассистент кафедры «Строительные конструкции, здания и сооружения», Белорусско-Российский университет, г. Могилев

ОСОБЕННОСТИ ДЕФОРМИРОВАНИЯ БЕТОНА НА ОСНОВЕ ОТХОДОВ ЛИТЕЙНО-МЕТАЛЛУРГИЧЕСКИХ ПРОИЗВОДСТВ ПРИ МАЛОЦИКЛОВОМ НАГРУЖЕНИИ

STRAINING SPECIALITIES OF CONCRETE WITH ELIMINA-TION OF METALLURGICAL INDUSTRIES WASTES AS FINE AGGREGATE UNDER LOW-CYCLE LOADING

Аннотация

В статье изложены перспективы использования отходов литейно-металлургических производств в качестве мелкого заполнителя для бетона и особенности деформирования такого бетона при малоцикловом нагружении.

Abstract

The article presents possibilities of using the metallurgical industries wastes as concrete fine aggregate (WMI-concrete) and straining specialities of WMI-concrete under low-cycle loading.

введение

Заводы Могилевской области уже сегодня испытывают серьезные затруднения с мелким заполнителем бетонов. Этот дефицит можно ликвидировать, используя в качестве мелкого заполнителя пески отработанных формовочных смесей литейнометаллургических производств. Промышленные предприятия Могилева, имеющие литейные производства, ежегодно вывозят в отвалы около 80 тыс. м³ отработанных формовочных смесей.

Ранее проводились исследования прочности и деформативности бетона с использованием отходов литейно-металлургических производств в качестве мелкого заполнителя (ОМП-бетона)

при кратковременном центральном сжатии [13, 14, 15]. Для анализа были взяты формовочные смеси промышленных предприятий г. Могилева: литейного цеха завода «Стромавтолиния», чугунолитейного производства (ЧЛП) лифтостроительного завода, литейного цеха металлургического завода им. Мясникова, сталелитейного и чугунолитейного цехов автозавода им. Кирова.

Большая часть исследований в странах СНГ и за рубежом посвящена работе бетона при действии кратковременных, длительных и динамических нагрузок. Однако в последнее время возрос интерес к изучению влияния малоциклового нагружения на свойства бетонов разных видов. Достаточно полно изучено влияние малоцикловых нагрузок на прочностные и деформативные свойства тяжелого бетона [1, 2, 3, 8, 10, 11, 16, 17]. Подобные исследования были также проведены для сталефибробетона [9]. Исследование работы ОМП-бетона при малоцикловом нагружении к настоящему времени не проводилось.

ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Было испытано две серии опытных образцов. В каждой из серий испытывались кубы с размером ребра 100 и 150 мм; призмы с размерами $100 \times 100 \times 400$ и $150 \times 150 \times 600$ мм для определения прочностных и деформативных характеристик ОМП-бетона при однократном нагружении; цилиндры диаметром 150 мм высотой 300 мм. С целью изучения особенностей работы ОМП-бетона при действии малоцикловых нагрузок различных уровней были испытаны призмы с размерами 150 × 150 × 600 мм.

Испытание кубов, цилиндров и призм с размерами $100 \times 100 \times 400$ мм на сжатие проводили в соответствии с [5, 6] на гидравлическом прессе ИП-1000, призм с размерами $150 \times 150 \times 600$ мм — на гидравлическом прессе ИП-2000, испытание на растяжение призм с размерами $100 \times 100 \times 400$ мм на гидравлическом прессе УММ-5.

Прочностные и деформативные характеристики ОМП-бетона приведены в табл. 1.

Программа испытания призм малоцикловой нагрузкой составлена таким образом, чтобы замоделировать работу бетона в реальных условиях. С этой целью были приняты четыре режима нагружения опытных призм:

1) воздействие нагрузок среднего уровня ($\eta_{top} = 0,6-0,7$); 2) воздействие нагрузок высокого уровня ($\eta_{top} = 0,8-0,85$);

Таблица 1

№ серии	Возраст бетона, сут.	Кубиковая проч- ность f. МПа	Призменная прочность f _{сш} , МПа	Прочность при растяжении, МПа	Коэффициент призменной $k_c = f_m / f_{c, cubc, m}$	Начальный мо- дуль упругости Е _{ст} , ГПа
1	35	24,5	18,8	1,60	0,767	23,22
2	32	32,8	26,6	2,00	0,811	31,57

Прочностные и деформативные характеристики ОМП-бетона

3) изменение уровня нагрузки со среднего на высокий (с η_{top1} = 0,6-0,7 до η_{top2} = 0,8-0,85);
4) внезапное скачкообразное изменение уровня нагрузки

4) внезапное скачкообразное изменение уровня нагрузки на более высокий с последующим возвращением к эксплуатационному уровню ($\eta_{top} = 0,6-0,7$, случайный скачок на одном из средних циклов нагружения до $\eta_{top}^{ran} = 0,9$).

до η_{top}^{ran} = 0,9). Продольные деформации фиксировали индикаторами часового типа с ценой деления 0,01 мм на базе 280, поперечные деформации – индикаторами часового типа с ценой деления 0,001 мм на базе 120 мм, установленными по четырем граням. На призмах, испытанных на растяжение, по четырем гранями устанавливали индикаторами часового типа с ценой деления 0,001 мм на базе 250 мм. Деформации фиксировали сразу после приложения очередной ступени нагрузки и в конце ее выдержки.

После центрирования призм на прессе малоцикловую нагрузку прикладывали ступенями, равными примерно $0,1 \cdot f_{cm}$. Нагружение проводили с постоянной скоростью роста напряжений в пределах ($0,5 \pm 0,2$) МПа/с. На каждой ступени в течение 3–5 минут осуществляли выдерживание нагрузки. Продольные и поперечные деформации фиксировали в начале и в конце выдержки на каждой ступени нагружения. Размещение приборов, фиксирующих продольные и поперечные деформации, принято таким же, как и для призм, испытанных однократным нагружением.

На первом цикле нагружение призмы осуществляли ступенями, равными 0,1 f_{cm}, до верхнего уровня η_{top} , после выдержки теми же ступенями образец разгружали до нижнего уровня η_{low} .

Далее в течение минимум десяти циклов ступенями осуществляли нагрузку-разгрузку в пределах $\eta_{low} - \eta_{top}$. В соответствии с программой экспериментальных исследований на последнем цикле нагружения призму доводили до разрушения.

При проведении исследований фиксировали: значение уровня нагрузки, количество циклов нагружения до разрушения образца; величину продольных и поперечных деформаций на этапах загрузки-разгрузки.

ОПРЕДЕЛЕНИЕ ГРАНИЦ МИКРОТРЕЩИНООБРАЗОВАНИЯ

Для описания работы изгибаемых железобетонных элементов, усиленных наращиванием сжатой зоны, в условиях малоциклового нагружения необходимо определить верхний предел микротрещинообразования η_{crc}^{v} – так называемую «критическую границу», при достижении которой наблюдается активный прирост и накопление пластических деформаций, и нижний предел микротрещинообразования η_{crc}^{0} , ниже которого бетон работает практически упруго. Верхний предел микротрещинообразования является «критической границей» работы конструкции при малоцикловом нагружении [1].

Верхняя граница микротрещинообразования определялась графическим методом по усредненным экспериментальным данным для двух призм, испытанных для каждой серии образцов кратковременным нагружением, путем построения зависимости «Уровень нагружения η – объемная деформация ε_ν» (рис. 1) [12].

На рис. 1 и далее приняты следующие условные обозначения:

1 – ОМП-бетон с f_{cm} =18,8 МПа; $f_{c,cube,m}$ =24,5 МПа; η_{crc}^{v} =0,85; η_{crc}^{0} =0,61; 2 – ОМП-бетон с f_{cm} =26,6 МПа; $f_{c,cube,m}$ =32,8 МПа; η_{crc}^{v} =0,89; η_{crc}^{0} =0,66.

На основании линейного корреляционного анализа экспериментальных данных были определены значения коэффициента Пуассона v (рис. 2).

Пуассона v (рис. 2). По корреляционным кривым зависимостей « $\frac{dv}{d\eta} - \eta$ » и « $\frac{d^2v}{d\eta^2} - \eta$ » были определены соответственно верхняя η_{cre}^v и нижняя η_{cre}^o границы образования и развития продольных микротрещин отрыва при кратковременном сжатии бетона [4] (рис. 3).

Особенностью работы ОМП-бетона при кратковременном нагружении является хрупкий характер разрушения образцов: после

Рисунок 1. Определение верхней границы микротрещинообразования η_{crc}^v

Рисунок 2. Корреляционная зависимость «Уровень нагружения η – коэффициент Пуассона v»

Рисунок 3. Определение нижнего предела микротрещинообразования η^0_{cre}

достижения уровня η_{cre}^{v} рост деформаций быстронатекающей ползучести становится очень интенсивным и приводит к разрушению.

На основании экспериментальных данных был сделан вывод о том, что между верхним и нижним пределами микротрещинообразования существует линейная зависимость. Коэффициент $k_{cre} = \eta_{cre}^0 / \eta_{cre}^v$ для ОМП-бетона примерно равен 0,73 (табл. 2).

Таблица 2

No серии	Прочі ОМП-(ность бетона	Пред микротро образон	Коэффици-	
ла серии	f _{cm} , МПа	f _{c,cube,m} , МПа	верхний η ^ν _{crc}	нижний η _{crc}	$k_{crc} = \frac{\eta_{crc}^0}{\eta_{crc}^v}$
1	18,8	24,5	0,849	0,610	0,719
2	26,6	32,8	0,888	0,655	0,737

Нахождение коэффициента k_{erc}

Для теоретического определения пределов микротрещинообразования (нижнего η^0_{crc} и верхнего η^v_{crc}) по результатам проведенных экспериментальных исследований были выведены зависимости:

$$\eta_{\rm crc}^0 = 0,33k_{\rm crc} \cdot \ln f_{\rm cm} - 0.15; \tag{1}$$

$$\eta_{crc}^{v} = 0,33k_{crc} \cdot \ln f_{cm} + 0.1.$$
 (2)

Сравнение опытных и теоретических данных приведено в табл. 3.

ПРОЧНОСТЬ И ДЕФОРМАТИВНОСТЬ ОМП-БЕТОНА ПРИ МАЛОЦИКЛОВОМ НАГРУЖЕНИИ

Для бетона на основе ОМП характерны те же особенности работы в условиях малоциклового загружения, что и для традиционного бетона: при высоких уровнях загружения происходит стабилизация прироста деформаций (рис. 4б, 4в, 5б, 5в), незначительное увеличение уровня нагружения на рост деформаций бетона существенно не влияет (рис. 5а); при изменении эксплуатационного уровня на более высокий на протяжении последующих десяти циклов прирост деформаций стабилизируется (рис. 4в, 5в); при внезапном увеличении уровня нагрузки деформации бетона растут, однако

Таблица 3

Сравн	ение опыт	ных и	расчетных	значе	ний п	редел	0B
микрот	рещинооб	разовал	ния нижне	ΓΟ η ⁰ _{cre}	и вер	хнего	η_{cre}^{v}

Вид бетона	Коэф- фициент k _{ere}	Проч- ность f _{сm} , MПа	Опытные значения		Расчетные значения		Отклонения расчетных значений от опытных, %		
			$\eta^0_{\text{cre}}{}^{o\pi}$	$\eta^{v}_{crc}{}^{ m on}$	η_{crc}^{0} pacy	η_{crc}^{v} pacy	$\Delta\eta^0_{crc}$	$\Delta\eta_{crc}^{v}$	
ОМП-	0.72	18,8	0,61	0,849	0,564	0,814	7,6	4,1	
бетон	бетон	0,75	26,6	0,655	0,888	0,648	0,898	1,0	-1,2

при возвращении к эксплуатационному уровню они стабилизируются, при этом имеет место «эффект Баушингера», когда граница ползучести при разгружении уменьшается под влиянием пластических деформаций, возникших при нагружении (рис. 4г, 5г).

На рис. 4 и далее приняты следующие условные обозначения: η_{low} – нижний уровень нагружения; η_{top} – верхний уровень нагружения.

Прочность ОМП-бетона при малоцикловых нагрузках независимо от режима загружения изменяется незначительно (на величину до 5 %) по сравнению со статическим нагружением. Это связано с высокой критической границей.

Так как значительный прирост пластических деформаций в ОМП-бетонах, как уже отмечалось выше, имеет место в основном при разрушающей нагрузке ($\eta = 1,0$), то развитие деформаций ползучести в процессе малоциклового нагружения не является критическим и не ведет к постепенному разрушению образца, а, напротив, способствует стабилизации пластических деформаций и, как следствие, незначительному изменению прочности (рис. 6).

Ввиду высокого значения критической границы особенностью работы ОМП-бетона является очень быстрый рост пластических деформаций при превышении уровня η_{erc}^{v} и, как следствие, хрупкий характер разрушения структуры ОМП-бетона, что накладывает определенные ограничения при его использовании в сжатой зоне конструкций: режим работы конструкции должен

Рисунок 4. Диаграммы деформирования ОМП-бетона при малоцикловом нагружении ($f_{cm} = 18,8$ МПа; $f_{f_{ccube.m}} = 24,5$ МПа; $\eta_{v_{crc}}^{v} = 0,849$)

а) – ПДЗУ_04-07 [η_{low} = 0,36; η_{top} = 0,63]; б) – ПДЗУ_04-08 [η_{low} = 0,38; η_{top} = 0,75]; в) – ПДЗУ_04-07-08 [η_{low} = 0,38; на 1-5-м циклах η_{top} = 0,67; на 6-11-м циклах η_{top} = 0,86]; г) – ПДЗУ_04-07(09) [η_{low} = 0,37; на 1-5, 7-11-м циклах η_{top} = 0,65; на 6-м цикле η_{top} = 0,88]

быть строго ограничен нагружениями низких и средних уровней, то есть не превышающих критическую границу η_{cm}^{v} .

ТРАНСФОРМИРОВАННАЯ ДИАГРАММА ДЕФОРМИРОВАНИЯ ОМП-БЕТОНА ПРИ МАЛОЦИКЛОВОМ НАГРУЖЕНИИ

Описание трансформированных диаграмм деформирования бетона основано на следующем подходе: характер диаграммы деформирования бетона не изменяется, а возникает необходимость корректировки ее базовых параметрических точек (f_{cm} , ε_{c1} , ε_{cu}) путем введения частных коэффициентов, полученных эмпирическим путем. Для корректировки значения прочности бетона предложен частный коэффициент $\gamma_{c,cyc}$, учитывающий неблагоприятное воздействие малоциклового нагружения:

Рисунок 5. Диаграммы деформирования ОМП-бетона при малоцикловом нагружении ($f_{cm} = 26,6$ МПа; $f_{f_{c,cube,m}} = 32,8$ МПа; $\eta^v_{crc} = 0,888$)

а) – ПД4у_04-07 [η_{low} = 0,42; η_{top} = 0,73]; б) – ПД4у_04-08 [η_{low} = 0,38; η_{top} = 0,76]; в) – ПД4у_04-07-08 [η_{low} = 0,41; на 1-5-м циклах η_{top} = 0,72; на 6-11-м циклах η_{top} = 0,82]; r) – ПД4у_04-07(09) [η_{low} = 0,42; на 1-5, 7-10-м циклах η_{top} = 0,73; на 6-м цикле η_{top} = 0,90]

$$\gamma_{c,cyc} = \frac{1}{0.97\sqrt{\eta_{crc}^{v}} - 0.3\ln\eta_{top}}.$$
 (3)

Данная зависимость обеспечивает удовлетворительную сходимость с экспериментальными данными (в пределах 15 %).

Малоцикловая прочность ОМП-бетона:

$$f_{cm,cyc} = \frac{f_{cm}}{\gamma_{c,cyc}}.$$
 (4)

Относительные деформации є_{с1,сус}, соответствующие пиковой точке трансформированной диаграммы деформирования ОМП-бетона, определяются по формуле:

$$\varepsilon_{c1,cyc} = 0.5 \cdot f_{cm,cyc}^{1.07 - \eta_{cr}^0} \le 2.8 \%_{oo}.$$
 (5)

Рисунок 6. Огибающие кривые для диаграмм деформирования ОМП-бетона при малоцикловом нагружении: a – f_{cm} = 18,8 МПа; f_{c,cube,m} = 24,5 МПа; 6 – f_{cm} = 26,6 МПа; f_{c,cube,m} = 32,8 МПа

Даная зависимость хорошо согласуется с опытными данными и по мере накопления экспериментальных данных может уточняться.

Зависимость для определения предельных деформаций ОМПбетона выведена на основе положений энергетической теории [7] при помощи программного комплекса Mathematica 6.0:

$$\varepsilon_{\rm cu,cyc} = \left(1 + \frac{16}{f_{\rm cm,cyc}}\right) \cdot \varepsilon_{\rm c1,cyc} \le 3,2\%_{\rm oo}.$$
 (6)

Модуль упругости ОМП-бетона зависит от верхнего уровня нагружения η_{top1} , имевшего место на первых 1–3 циклах, и малоцикловой прочности бетонной матрицы:

$$E_{\rm cm, cyc} = \frac{45f_{\rm cm, cyc}}{19 + \eta_{\rm top1} \cdot f_{\rm cm, cyc}}.$$
 (7)

Среднее отклонение расчетных значений, полученных по формуле (5), от опытных находится в пределах 15 %.

Таким образом, трансформированная диаграмма деформирования ОМП-бетона (рис. 7) описывается уравнением:

$$\frac{\sigma_{c,cyc}}{f_{cm,cyc}} = \frac{k\eta - \eta^2}{1 + (k-2) \cdot \eta},$$
rge $k = 1,05E_{cm,cyc} \frac{\left|\varepsilon_{c1,cyc}\right|}{f_{cm,cyc}}.$
(8)

На рис. 8 показаны опытные точки восходящей ветви диаграмм деформирования и теоретические кривые полных диаграмм деформирования ОМП-бетона при малоцикловом нагружении.

Рисунок 8. Теоретические кривые и опытные точки диаграмм деформирования ОМП-бетона при малоцикловом нагружении: а – f_{cm} = 18,8 МПа; f_{c.cube.m} = 24,5 МПа; 6 – f_{cm} = 26,6 МПа; f_{c.cube.m} = 32,8 МПа

выводы

Предложены аналитические зависимости для определения нижнего и верхнего пределов микротрещинообразования при статическом нагружении, учитывающие вид исследуемого бетона и его прочность. Вид бетона учитывается коэффициентом k_{сrc}, который для ОМП-бетона принят равным 0,73.

На основе анализа результатов экспериментальных исследований получены диаграммы деформирования ОМП-бетона при статическом нагружении и предложено описание трансформированных диаграмм деформирования ОМП-бетона, отражающих влияние малоциклового нагружения.

Список использованных источников

- 1. Бабич, Є.М. Бетонні та залізобетонні елементи в умовах малоциклових навантажень : моногр. / Є.М. Бабич, Ю.О. Крусь. Рівне : Вид-во РДТУ, 1999. 119 с.
- Бабич, Є.М. Деструктивні особливості і малоциклова втомленість важкого бетону при малоцикловому стиску / Є.М. Бабич, Ю.М. Панчук // Ресурсоекономні матеріали, конструкції, будовлі та споруди : збірник наукових працъ / НУВГП; редкол. : Є.М. Бабич [та інш.]. – Рівне, 2000. – Вип. 4. – С. 106–110.
- Бабич, Е.М. Прочность бетона после действия малоцикловой сжимающей нагрузки / Е.М. Бабич, А.П. Погореляк // Изв. вузов. Строительство и архитектура. – 1976. – № 4. – С. 33–36.
- Берг, О.Я. Физические основы теории прочности бетона и железобетона / О.Я. Берг. М.: Госстройиздат, 1962. 96 с.
- Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона: ГОСТ 24452-80. Введ. 01.01.1982. М.: ИПК Изд-во стандартов, 1984. 20 с.
- Бетоны. Методы определения прочности по контрольным образцам: ГОСТ 10180-90. – Введ. 29.1201.1989. – М.: ИПК Изд-во стандартов, 1990. – 45 с.
- Гладков, Д.И. Физико-химические основы прочности бетона и роль технологии в ее обеспечении. – Белгород : БГТУ им. В.Т. Шухова, 2004. – 293 с
- Гомон, С.С. Експериментально-статистичні дослідження залежностей Е/ – η для малих рівнів навантажень / С.С. Гомон // Ресурсоекономні матеріали, конструкції, будовлі та споруди : збірник наукових праць / НУВГП; редкол. : С.М. Бабич [та інш.]. – Рівне, 2000. – Вип. 4. – С. 161–166.

- Дробишинець, С.Я. Вплив повторних малоциклових навантажень на механічні характеристики сталефібробетону та роботу згинальних елементів на його основі : дис. ... канд. техн. наук : 05.23.01 / С.Я. Дробышинець. – Луцк, 2005. – 174 с.
- Кухнюк, О.М. Вплив малоциклових навантажень на механичні характеристики бетону та работу згинальних залізобетонних елементів : автореф. дис. ... канд. техн. наук: 05.23.01 / О.М. Кухнюк ; Нац. ун-т «Львів. політехніка». – Львів, 2001. – 16 с.
- Райзер, В.Д. Методы теории надежности в задачах нормирования расчетных параметров строительных конструкций / В.Д. Райзер. – М.: Стройиздат, 1986. – 193 с.
- Семенюк, С.Д. Железобетонные пространственные фундаменты жилых и гражданских зданий на неравномерно деформируемом основании / С.Д. Семенюк. – Могилев : Белорус.-Рос. ун-т, 2003. – 269 с.
- Семенюк, С.Д. Исследование эффективности использования гранулированного ваграночного шлака в качестве заполнителя для жаростойкого бетона / С.Д. Семенюк, Д.А. Ковширко // Чрезвычайные ситуации: предупреждение и ликвидация. – 2003. – № 2. – С. 64–73.
- Семенюк, С.Д. Отработанные пески формовочных смесей мелкий заполнитель бетонов / С.Д. Семенюк, Р.П. Семенюк // Бетон и железобетон. – 1992. – № 7. – С. 29–30.
- 15. Семенюк, С.Д. Отходы литейно-металлургических производств в качестве мелкого заполнителя для бетонов / С.Д. Семенюк, Т.С. Бурко // Ресурсоекономні матеріали, конструкції, будовлі та споруди : збірник наукових праць / НУВГП; редкол. : С.М. Бабич [та інш.]. Рівне, 2010. Вип. 20 С. 223–231.
- Ставров, Г.Н. О критерии предельного состояния железобетонных конструкций при малоцикловых нагружениях / Г.Н. Ставров, В.В. Руденко // Изв. вузов. Сер. Строительство и архитектура. – 1986. – № 7. – С. 1–4.
- 17. Тахтай, Д.А. Прочность и деформативность бетона при внецентренном циклическом нагружении / Д.А. Тахтай, В.И. Веретенников, А.А. Бармотин // Коммунальное хозяйство городов : науч.-техн. сб. – Киев, 2004. – № 60. – С. 53–65.

Статья поступила в редколлегию 27.11.2013