Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет»

УТВЕРЖДАЮ

Первый проректор Белорусско-Российского

университета

Ю.В. Машин

«26» 06 2021r.

Регистрационный № УД-*010304* / Б. *1. 0. 11.* /р

ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ АЛГЕБРЫ

(наименование дисциплины)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Направление подготовки 01.03.04 Прикладная математика **Направленность (профиль)** Разработка программного обеспечения

Квалификация Бакалавр

	Форма обучения
	Очная
Курс	1
Семестр	2
Лекции, часы	34
Лабораторные занятия, часы	34
Зачёт, семестр	2
Контактная работа по учебным занятиям, часы	68
Самостоятельная работа, часы	40
Всего часов / зачётных единиц	108 / 3

Кафедра-разработчик программы: _		«Высшая математика»	
		(название кафедры)	
Составитель: _	Д.В. Роголев, канд	д. физмат. наук; А.Н. Бондарев, ст. пр.	
(И.О. Фамилия ученая степень, ученое звание)		я, ученая степень, ученое звание)	

Рабочая программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования - бакалавриат по направлению подготовки 01.03.04 Прикладная математика № 11 от 10.01.2018 г., учебным планом рег. № 010304-2 от 26.03.2021 г.

Рассмотрена и рекомендована к утверждению кафедрой «Высшая математика» 27.05.2021 г., протокол № 9.

Зав. кафедрой В.Г. Замураев

Одобрена и рекомендована к утверждению Научно-методическим советом Белорусско-Российского университета

«16» июня 2021 г., протокол № 7.

Зам. председателя Научно-методического совета

____ С.А. Сухоцкий

Рецензент: Наталья Владимировна Кожуренко, доцент кафедры программного обеспечения информационных технологий учреждения образования «Могилевский государственный университет имени А.А. Кулешова», кандидат физико-математических наук

Рабочая программа согласована:

Ведущий библиотекарь

Начальник учебно-методического отдела

В.А. Кемова

8. A. Keicerelle

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Цель учебной дисциплины

Целью учебной дисциплины является формирование специалистов, умеющих обоснованно и результативно применять существующие и осваивать новые вычислительные методы алгебры, применяемые при решении прикладных задач, не имеющих аналитического решения, либо имеющих его, но, по ряду причин, получение которого затруднено.

1.2 Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен

знать:

- способы контроля вычислений и оценки погрешности вычислительных методов алгебры;
- теоретические основы прямых и итерационных методов численного решения линейных систем;

уметь:

- применять численные методы для решения практических задач;
- выбирать требуемый метод в соответствии с особенностями задачи и имеющимися ограничениями на реализацию;
- использовать имеющееся программное обеспечение для решения задач и оценивать погрешности выбранных методов решения;

влалеть:

- практическими вычислительными навыками решения прикладных задач;
- опытом выбора оптимального и оценки погрешностей реализованного численного метода.

1.3 Место учебной дисциплины в системе подготовки студента

Дисциплина относится к блоку 1 «Дисциплины (модули) (обязательная часть).

Перечень учебных дисциплин, изучаемых ранее, усвоение которых необходимо для изучения данной дисциплины:

- линейная алгебра;
- математический анализ.

Перечень учебных дисциплин (циклов дисциплин), которые будут опираться на данную дисциплину:

- современные математические системы;
- численный анализ;
- математическое программирование;
- численные методы математической физики;
- исследование операций и теория игр.

Кроме того, знания, полученные при изучении дисциплины на лабораторных занятиях будут применены при прохождении ознакомительной практики, а также при подготовке выпускной квалификационной работы и дальнейшей профессиональной деятельности.

1.4 Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды форми-	
руемых ком-	Наименования формируемых компетенций
петенций	
ОПК-2	Способен обоснованно выбирать, дорабатывать и применять для реше-
	ния исследовательских и проектных задач математические методы и мо-
	дели, осуществлять проверку адекватности моделей, анализировать ре-
	зультаты, оценивать надёжность и качество функционирования систем

2 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Вклад дисциплины в формирование результатов обучения выпускника (компетенций) и достижение обобщённых результатов обучения происходит путём освоения содержания обучения и достижения частных результатов обучения, описанных в данном разделе.

2.1 Содержание учебной дисциплины

Но-	Содержание учеоно		Коды форми-
мер	Наименование тем	Содержание	руемых ком-
тем			петенций
1	Теория погрешностей	Виды погрешностей: относительные и абсолютные, неустранимая и устранимая; погрешность аппроксимации и вычислительная. Приближённые числа и действия над ними.	ОПК-2
2	Вычислительные методы и алгоритмы	Вычислительные задачи, методы и алгоритмы. Требования, предъявляемые к вычислительным алгоритмам: устойчивость, точность, эффективность, экономичность.	ОПК-2
3	Решение систем линейных алгебраических уравнений	Общая характеристика проблем решения систем линейных алгебраических уравнений (СЛАУ), решения задач на собственные значения, понятий корректности и устойчивости СЛАУ. Устойчивость решения СЛАУ по правой части и коэффициентная устойчивость. Число обусловленности матрицы и его свойства. Хорошо обусловленные и плохо обусловленные СЛАУ. Геометрическая интерпретация понятия обусловленности. Метод регуляризации	ОПК-2
4	Прямые методы решения СЛАУ: методы Гаусса	Методы Гаусса с выбором главного элемента. Вычисление определителей и обращение матриц с помощью метода Гаусса.	ОПК-2
5	Прямые методы решения СЛАУ: LU-разложение	Общая характеристика прямых методов решения СЛАУ. Теорема об LU-разложении. Схема единственного деления и её связь с теоремой об LU-разложении.	ОПК-2
6	Прямые методы решения СЛАУ: методы Жордана, Холецкого	Метод квадратного корня (Холецкого). Метод Жордана обращения матриц. Диагонально доминирующие матрицы. Ортогональные преобразования. Методы отражений, вращений и ортогонализации.	ОПК-2
7	Прямые методы решения СЛАУ: методы прогонки	Метод прогонки решения СЛАУ с трёхдиагональной матрицей. Связь метода прогонки с методом Гаусса. Теорема о корректности метода прогонки. Методы правой, встречной и циклической прогонки. Теорема о корректности метода циклической прогонки	ОПК-2
8	Итерационные методы решения СЛАУ: общая характеристика	Общая характеристика итерационных методов решения СЛАУ. Матричные нормы. Сходимость матричной геометрической прогрессии. Градиент функционала.	ОПК-2
9	Итерационные методы решения СЛАУ: простая итерация и метод Зейделя	Методы простой итерации и Зейделя решения СЛАУ.	ОПК-2
10	Итерационные методы решения СЛАУ: методы Якоби, Гаусса-Зейделя и релаксации	Теоремы сходимости. Элементы теории двухслойных итерационных методов. Основная теорема сходимости. Методы Якоби, Гаусса-Зейделя и релаксации.	ОПК-2
11	Сходимость итерационных методов	Оптимизация сходимости итерационных процессов. Итерационные методы вариационного типа и теоремы их сходимости.	ОПК-2
12	Решение задач на соб- ственные значения	Общая постановка задачи на собственные значения. Спектр матрицы. Понятие полной и частичной проблемы собственных значений. Устойчивость задачи на собственные значения. Методы Данилевского, Крылова, Леверье и видоизменение Фаддеева.	ОПК-2

13	Полная проблема соб-	Прямые методы отражений и вращений. Итерационный	ОПК-2
	ственных значений: ме-	метод вращений. QR-алгоритм. Метод бисекций реше-	
	тоды отражений и вра-	ния полной проблемы собственных значений.	
	щений		
14	Частичная проблема	Степенной метод вычисления наибольшего по модулю	ОПК-2
	собственных значений	собственного значения и его модификации. Метод об-	
		ратных итераций. Метод λ-разности. Ускорение сходи-	
		мости степенного метода.	

2.2 Учебно-методическая карта учебной дисциплины

	T				ı	1	1
№ недели	Лекции (наименование тем)	Часы	Лабораторные занятия	Часы	Самостоятельная работа, часы	Форма контроля знаний	Баллы (max)
Модуль 1					L		
1	1. Теория погрешностей	2	Л. р. 1 Вычисление погрешностей	2	4	ЗЛР	6
2	2. Вычислительные методы и алгоритмы	2	Л. р. 2 Решение системы линейных алгебраических уравнений методом Гаусса	2	2		
3	3. Решение систем линейных алгебраических уравнений	2	Л. р. 2 Решение системы линейных алгебраических уравнений методом Гаусса	2	2	ЗЛР	6
4	4. Прямые методы решения СЛАУ: методы Гаусса	2	Л. р. 3 Решение системы линейных алгебраических уравнений методом LU-разложения	2	2		
5	5. Прямые методы решения СЛАУ: LU-разложение	2	Л. р. 3 Решение системы линейных алгебраических уравнений методом LU-разложения	2	2	ЗЛР	6
6	6. Прямые методы решения СЛАУ: методы Жордана, Холецкого	2	Л. р. 4 Решение системы линейных алгебраических уравнений методом квадратного корня	2	2		
7	7. Прямые методы решения СЛАУ: методы прогонки	2	Л. р. 4 Решение системы линейных алгебраических уравнений методом квадратного корня	2	2	ЗЛР	6
8	8. Итерационные методы решения СЛАУ: общая характеристика	2	Л. р. 5 Решение системы линейных алгебраических уравнений методом прогонки	2	4	3ЛР ПКУ	6 30
Модуль 2			T (T)		1		
9	9. Итерационные методы решения СЛАУ: простая итерация и метод Зейделя	2	Л. р. 6 Приближённое решение системы ли- нейных алгебраических уравнений методом простой итерации	2	2		
10	10. Итерационные методы решения СЛАУ: методы Якоби, Гаусса-Зейделя и релаксации	2	Л. р. 6 Приближённое решение системы линейных алгебраических уравнений методом простой итерации	2	2	ЗЛР	6
11	11. Сходимость итерационных методов	2	Л. р. 7 Приближённое решение системы линейных алгебраических уравнений методом Зейделя	2	2		
12	12. Решение задач на собственные значения	2	Л. р. 7 Приближённое решение системы линейных алгебраических уравнений методом Зейделя	2	2	ЗЛР	6
13	12. Решение задач на собственные значения	2	Л. р. 8 Приближённое решение системы линейных алгебраических уравнений методами Якоби и релаксации	2	2		
14	13. Полная проблема собственных значений: методы отражений и вра- щений	2	Л. р. 8 Приближённое решение системы линейных алгебраических уравнений методами Якоби и релаксации	2	2	ЗЛР	6
15	13. Полная проблема собственных значений: методы отражений и вращений	2	Л. р. 9 Приближённое решение полной про- блемы собственных значений	2	2		
16	14. Частичная проблема собственных значений	2	Л. р. 9 Приближённое решение полной про- блемы собственных значений	2	2	ЗЛР	6
17	14. Частичная проблема собственных значений	2	Л. р. 10 Приближённое решение частичной проблемы собственных значений	2	4	ЗЛР ПКУ ПА (зачёт)	6 30 40
	Итого	34		34	40		100

Принятые обозначения:

Текущий контроль –

ЗЛР – защита лабораторной работы;

ПКУ – промежуточный контроль успеваемости.

ПА – Промежуточная аттестация.

Итоговая оценка определяется как сумма текущего контроля и промежуточной аттестации и соответствует баллам:

Зачёт

Оценка	Зачтено	Не зачтено
Баллы	51-100	0-50

3 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении дисциплины используется модульно-рейтинговая система оценки знаний студентов. Применение форм и методов проведения занятий при изучении различных тем курса представлено в таблице.

№	Форма проведения заня-	Вид аудиторных занятий		
п/п	тия	Лекции	Лабораторные занятия	Всего часов
1	Традиционные	1,2		4
2	Мультимедиа	3-14		30
3	Расчётные		1	2
4	С использованием ЭВМ		2-10	32
	ИТОГО			68

4 ОЦЕНОЧНЫЕ СРЕДСТВА

Используемые оценочные средства по учебной дисциплине представлены в таблице и хранятся на кафедре.

№ п/п	Вид оценочных средств	Количество комплектов
1	Вопросы к лабораторным работам	10
2	Вопросы к зачёту	1
3	Задания к зачёту	1

5 МЕТОДИКА И КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ СТУДЕНТОВ

5.1 Уровни сформированности компетенций

N₂	Уровни сформирован-	Содержательное описание уровня	Результаты обучения			
п/п	ности компетенции					
ОПЬ	ОПК-2 Способен обоснованно выбирать, дорабатывать и применять для решения исследователь-					
ских	и проектных задач матем	атические методы и модели, осущест	влять проверку адекватности			
		ьтаты, оценивать надёжность и качест	A * A			
ОПЬ	К-2.5 Способен обоснован	но выбирать, дорабатывать и примен	ять для решения исследова-			
тель	ских и проектных задач в	ычислительные методы алгебры, анал	изировать результаты			
1	Пороговый уровень	Понимание основных принципов	Умение выбрать математиче-			
		выбора математических моделей.	ские методы и модели для ре-			
			шения алгебраических задач			
2	Продвинутый уровень	Умение анализировать практиче-	Применение математических			
		скую задачу, выбирать и использо-	моделей для решения практи-			
		вать подходящие математические	ческих задач, анализ результа-			
		методы и модели для её решения.	тов.			
3	Высокий уровень	Навыки математического модели-	Выбор и создание математи-			

	рования практических задач.	ческих моделей для решения
		алгебраических задач.

5.2 Методика оценки знаний, умений и навыков студентов

Результаты обучения	Оценочные средства
ОПК-2 Способен обоснованно выбирать, дорабать	вать и применять для решения исследователь-
ских и проектных задач математические методы и	
моделей, анализировать результаты, оценивать над	дёжность и качество функционирования систем
Умение выбрать математические методы и моде-	Вопросы к лабораторным работам.
ли для решения алгебраических задач	
Применение математических моделей для реше-	Вопросы к лабораторным работам.
ния практических задач, анализ результатов.	
Выбор и создание математических моделей для	Вопросы к лабораторным работам.
решения алгебраических задач.	

5.3 Критерии оценки лабораторных работ

Лабораторные работы (ЗЛР) оцениваются до 6 баллов:

- 0-1 баллов полное отсутствие навыков выполнения работы;
- 2-3 балла грубые ошибки при выполнении работы;
- 4-5 баллов уверенное выполнение работы при наличии незначительных ошибок;
- 6 баллов уверенное выполнение работы с полным объяснением.

5.4 Критерии оценки зачёта

Итоговая оценка на зачёте (зачтено, незачтено) определяется как сумма баллов промежуточного контроля успеваемости и промежуточной аттестации и соответствует суммарным баллам:

Оценка	Зачтено	Незачтено	
Баллы	51-100	0-50	

При этом промежуточный контроль успеваемости оценивается до 60 баллов, а промежуточная аттестация — до 40 баллов. Зачёт состоит из 4 заданий, оцениваемых до 10 баллов кажлое.

Критерий оценки ответа на вопрос или решения задачи на зачёте

- **1 балл** полное отсутствие знаний по теоретическому вопросу; отсутствие навыков решения задачи даже под руководством преподавателя.
- **3 балла** фрагментарные знания теоретического вопроса в объёме учебной программы, незнание используемой в вопросе терминологии, грубые ошибки в рассуждениях или в решении задачи; неуверенное решение задачи под руководством преподавателя.
- **5 баллов** частичное знание теоретического вопроса в объёме учебной программы, используемой в вопросе терминологии; уверенное решение задачи под руководством преподавателя.
- **8 баллов** знание теоретического вопроса в объёме учебной программы при наличии незначительных ошибок в используемых формулах, формулировках и определениях, которые сам студент исправляет в процессе ответа; уверенное самостоятельное решение задачи при наличии незначительных ошибок.
- **10 баллов** уверенное знание теоретического вопроса в объёме учебной программы и уверенное знание используемой в вопросе терминологии; уверенное самостоятельное решение задачи и уверенное знание используемой в задаче терминологии.

6 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕ-НИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО УЧЕБНОЙ ДИСЦИ-ПЛИНЕ

Самостоятельная работа студентов (СРС) направлена на закрепление и углубление освоения учебного материала, развитие практических умений. СРС включает следующие виды самостоятельной работы студентов:

- изучение основной и дополнительной литературы;
- решение индивидуальных задач во время проведения лабораторных занятий под контролем преподавателя.

Перечень контрольных вопросов и заданий для самостоятельной работы студентов приведён в приложении и хранится на кафедре.

Для СРС рекомендуется использовать источники, приведённые в п. 7.

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

7.1 Основная литература

№	Библиографическое описание		Количество
Π/Π	Bhosmorpagn teckee officeanine	Гриф	экземпляров
1	Вабищевич, П. Н. Численные методы. Вычислительный практикум. Практическое применение численных методов при использовании алгоритмического языка PYTHON / П. Н. Вабищевич. — 4-е изд., стер. — М.: ЛЕНАНД, 2021. — 320с.		8
2	Самарский А. А. Задачи и упражнения по численным методам: учеб. пособие / А. А. Самарский, П. Н. Вабищевич, Е. А. Самарская. – изд. стер. – М.: ЛИБРОКОМ, 2021. – 208с.		8

7.2 Дополнительная литература

No	Библиографическое описание	Гриф	Количество
Π/Π	виолиографическое описание		экземпляров
1	Введение в численные методы в задачах и упражнениях: Учебное пособие / Гулин А.В., Мажорова О.С., Морозова В.А. – М. : АРГАМАК-МЕДИА, НИЦ ИНФРА-М, 2019. – 368с. – Режим доступа: http://znanium.com/catalog/product/1032671	ı	ЭБС «Znanium»
2	Численные методы в математическом моделировании: учеб. пособие / Н.П. Савенкова, О.Г. Проворова, А.Ю. Мокин. — 2-е изд., испр. и доп. — М.: ИНФРА-М, 2019. — 176 с. — Режим доступа: http://znanium.com/catalog/product/355668	_	ЭБС «Znanium»
3	Численные методы. Практикум: учеб. пособие / А.В. Пантелеев, И.А. Кудрявцева. – М.: ИНФРА-М, 2020. – 512 с. – Режим доступа: http://znanium.com/catalog/product/351566	_	ЭБС «Znanium»

7.3 Перечень ресурсов сети Интернет по изучаемой дисциплине

- 1. GNU Octave [Электронный ресурс]. Режим доступа: https://www.gnu.org/software/octave/support, свободный.
- 2. Octave Forge Packages [Электронный ресурс]. Режим доступа: https://octave.sourceforge.io/packages.php, свободный.
- 3. Документация MATLAB [Электронный ресурс]. Режим доступа: https://docs.exponenta.ru/, свободный.

4. Трифонов, А. Г. Постановка задачи оптимизации и численные методы ее решения [Электронный ресурс] / А. Г. Трифонов. – Режим доступа:

https://hub.exponenta.ru/post/postanovka-zadachi-optimizatsii-i-chislennye-metody-ee-resheniya356, свободный.

- 5. EqWorld. Мир математических уравнений [Электронный ресурс]. Режим доступа: http://eqworld.ipmnet.ru/indexr.htm, свободный.
- 6. Сайт кафедры информатики и компьютерного проектирования МХТУ им. Д.И. Менделеева: материалы лекционного курса «Вычислительная математика». [Электронный ресурс]. Режим доступа: http://technosystems1.narod.ru/study/maths/lectures.html, свободный.

7.4 Перечень наглядных и других пособий, методических рекомендаций по проведению учебных занятий, а также методических материалов к используемым в образовательном процессе техническим средствам

7.4.1 Методические рекомендации

1. Роголев Д.В., Бондарев А.Н. Вычислительные методы алгебры. Методические рекомендации к лабораторным работам для студентов направления подготовки 01.03.04 «Прикладная математика» дневной формы обучения. Могилев: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». – [электронная версия].

7.4.2 Перечень программного обеспечения, используемого в учебном процессе

Свободно распространяемое ΠO : Python, GNU Octave, Adobe Reader, LibreOffice (темы N2 2-10).

7.4.3 Информационные технологии

Мультимедийные презентации

- Тема 3 Решение систем линейных алгебраических уравнений
- Тема 4 Прямые методы решения СЛАУ: методы Гаусса
- Тема 5 Прямые методы решения СЛАУ: LU-разложение
- Тема 6 Прямые методы решения СЛАУ: методы Жордана, Холецкого
- Тема 7 Прямые методы решения СЛАУ: методы прогонки
- Тема 8 Итерационные методы решения СЛАУ: общая характеристика
- Тема 9 Итерационные методы решения СЛАУ: простая итерация и метод Зейделя
- Тема 10 Итерационные методы решения СЛАУ: методы Якоби, Гаусса-Зейделя и релаксации
 - Тема 11 Сходимость итерационных методов
 - Тема 12 Решение задач на собственные значения
 - Тема 13 Полная проблема собственных значений: методы отражений и вращений
 - Тема 14 Частичная проблема собственных значений

8 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИ-ПЛИНЫ

Материально-техническое обеспечение дисциплины содержится в паспорте лаборатории <u>ауд.</u> 405, рег. номер <u>ПУЛ-4.535-405/1-20</u>.

ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ АЛГЕБРЫ

(наименование дисциплины)

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

Направление подготовки 01.03.04 Прикладная математика

Направленность (профиль) Разработка программного обеспечения

	Форма обучения Очная
Курс	1
Семестр	2
Лекции, часы	34
Лабораторные занятия, часы	34
Зачёт, семестр	2
Контактная работа по учебным занятиям, часы	68
Самостоятельная работа, часы	40
Всего часов / зачётных единиц	108 / 3

1 Цель учебной дисциплины

Целью учебной дисциплины является формирование специалистов, умеющих обоснованно и результативно применять существующие и осваивать новые вычислительные методы алгебры, применяемые при решении прикладных задач, не имеющих аналитического решения, либо имеющих его, но, по ряду причин, получение которого затруднено.

2 Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен

знать:

- способы контроля вычислений и оценки погрешности вычислительных методов алгебры;
- теоретические основы прямых и итерационных методов численного решения линейных систем;

уметь:

- применять численные методы для решения практических задач;
- выбирать требуемый метод в соответствии с особенностями задачи и имеющимися ограничениями на реализацию;
- использовать имеющееся программное обеспечение для решения задач и оценивать погрешности выбранных методов решения;

владеть:

- практическими вычислительными навыками решения прикладных задач;
- опытом выбора оптимального и оценки погрешностей реализованного численного метода.

3. Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды формируемых компетенций	Наименования формируемых компетенций		
ОПК-2	Способен обоснованно выбирать, дорабатывать и применять для реше-		
	ния исследовательских и проектных задач математические методы и мо-		
	дели, осуществлять проверку адекватности моделей, анализировать ре-		

зультаты, оценивать надёжность и качество функционирования систем

4. Образовательные технологии Традиционные, мультимедиа, расчётные, с использованием ЭВМ

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

по учебной дисциплине Вычислительные методы алгебры о1.03.04 Прикладная математика направленность (профиль) Разработка программного обеспечения

на 2022-2023 учебный год

№№		Дополнения и изменения			Основа- ние
1		7.2 добавить следующую литературу: На Пополнительная литература			Попол- нение
-	№ п/п	Библиографическое описание	Гриф	Количество экземпляров	библио- течного
	4	Копченова, Н. В. Вычислительная математика в примерах и задачах / Н. В. Копченова, И. А. Марон; учеб. по собие 5-е изд., стер Спб.; М.; Краснодар: Лань, 2021 368с.	-)-	5	фонда
2	7.4.1 изложить в новой редакции 1. Роголев Д.В., Бондарев А.Н. Вычислительные методы алгебры. Методические ре-			ческих указаний	

Рабочая программа пересмотрена и одобрена на заседании каф «Высшая математика» (название кафедры-разработчика программы)	редры
(протокол № 7 от «31» марта 2022 г.)	
Заведующий кафедрой канд. физмат.наук, доцент (ученая степень, ученое звание)	В.Г. Замураев
УТВЕРЖДАЮ	
Декан экономического факультета (название факультета, выпускающего по данной специальности)	
канд. физмат. наук, доцент (ученая степень, ученое звание)	И.И. Маковецкий
« <u>&8</u> » <u>04</u> 2022 г.	
СОГЛАСОВАНО:	
Ведущий библиотекарь	D.C. alexanoba

В.А. Кемова

2022 г.

«28» 04

Начальник учебно-методического

отдела

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

по учебной дисциплине	Вычислительные методы алгебры		
направление подготовки	01.03.04 Прикладная математика		
направленность (профиль)	Разработка программного обеспечения		

на 2023-2024 учебный год

NoNo	Дополнения и изменения	Основа-
.1	Дополнений и изменений нет	

Рабочая программа пересмотрена и одо	брена на заседании ка	федры			
«Высшая математи					
(название кафед	ры-разработчика программы)				
(протокол № 8 от «27» апреля 2023 г.)					
Заведующий кафедрой					
канд. физмат.наук, доцент (ученая степень, ученое звание)	83-7	В.Г. Замураев			
УТВЕРЖДАЮ					
Декан экономического факультета (название факультета, выпускающего	Декан экономического факультета (название факультета, выпускающего по данной специальности)				
канд. физмат. наук, доцент (ученая степень, ученое звание)	Tee	И.И. Маковецкий			
31 05 2023					
СОГЛАСОВАНО:					
Ведущий библиотекарь	cles	O.C. Ulycomber			
Начальник учебно-методического отдела		О.Е. Печковская			
ē		31 OS 2023			