Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет»

УТВЕРЖДАЮ

Первый проректор Белорусско-Российского

университета

Ю.В. Машин

2021 г.

Регистрационный № УД-150406/6.1.B. £ 2/p

ПРОГРАММИРОВАНИЕ ПРОМЫШЛЕННЫХ РОБОТОТЕХНИЧЕСКИХ СИСТЕМ

(наименование дисциплины)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Направление подготовки 15.04.06 Мехатроника и робототехника

Направленность (профиль) Промышленная и мобильная робототехника

Квалификация Магистр

	Форма обучения		
	Очная	Заочная	
Курс	2	2	
Семестр	3	4	
Лекции, часы	16	4	
Практические занятия, часы	32	6	
Лабораторные занятия, часы	32	6	
Зачет, семестр	3	4	
Контактная работа по учебным занятиям, часы	80	16	
Самостоятельная работа, часы	100	164	
Всего часов / зачетных единиц	180/5	180/5	

Кафедра-разработчик программы: Технология машиностроения (название кафедры)

Составитель: В. М. Шеменков, канд. техн. наук, доцент (И.О. Фамилия, ученая степень, ученое звание)

Е. Ю. Демиденко (И.О. Фамилия, ученая степень, ученое звание)

Рабочая программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 15.04.06 «Мехатроника и робототехника» (уровень магистратуры), утвержденным приказом № 1023 от 14.08.2020 г., учебным планом рег. № 150406-2 утвержденным 30.08.2021 г.

Рассмотрена и рекомендована к утверждению кафедрой «Технология машиностроения» «30» 08 2021 г., протокол № 1.

Зав. кафедрой

В. М. Шеменков

Одобрена и рекомендована к утверждению Научно-методическим советом Белорусско-Российского университета

«30» 08 2021 г., протокол № 1.

Зам. председателя Научно-методического совета

С.А. Сухоцкий

Рецензент:

Михаил Михайлович Кожевников, заведующий кафедрой «Автоматизация технологических процессов и производств» УО «Белорусский государственный университет пищевых и химических технологий», кандидат технических наук, доцент

Рабочая программа согласована:

Ведущий библиотекарь

precen

8.4. kerce selec

Начальник учебно-методического отдела

В.А. Кемова

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Цель учебной дисциплины

Целью изучения дисциплины является подготовка выпускников к инженерной деятельности по программированию робототехнических систем.

Изучение дисциплины должно содействовать формированию у студентов:

- способности иметь навыки по проектированию, конструированию и программированию роботизированных систем;
- способности и готовности программировать промышленных роботов в составе промышленных робототехнических систем;
- разрабатывать функциональные схемы, вести анализ устойчивости, точности и качества процессов управления промышленными робототехническими системами.

1.2 Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен знать:

- основные направления и перспективы автоматизации производственных процессов;
- основные технические характеристики и работу производственного оборудования в составе робототехнических комплексов и автоматизированных систем;
- способы представления программ работы производственного оборудования в составе промышленных роботехнических систем;
- основные методы программирования промышленных роботов и их технологические возможности при решении задач программирования;
- специфику работы систем цифрового программного управления в режимах подготовки и отработки программ;

уметь:

- разрабатывать программы управления промышленными робототехническими системами;
- настраивать возможные режимы работы оборудования с программным управлением;
 - осуществлять программирование траектории движения манипулятора робота;

влалеть

- методами и алгоритмами программирования основного технологического и периферийного оборудования для решения конкретных задач автоматизации производства;
- способами определения эффективности использования существующих или вновь разрабатываемых программ для промышленных робототехнических систем.

1.3 Место учебной дисциплины в системе подготовки студента

Дисциплина относится к блоку 1 «Дисциплины (модули) (элективные дисциплины)». Перечень учебных дисциплин, изучаемых ранее, усвоение которых необходимо для изучения данной дисциплины:

- автономные мобильные роботы;
- адаптивные мехатронные системы;
- информационные системы в робототехнике;
- промышленная робототехника.

Кроме того, результаты, полученные при изучении дисциплины на лекционных, лабораторных и практических занятиях будут применены при прохождении технологиче-

ской (проектно-технологической) практики, а также при подготовке выпускной квалификационной работы и дальнейшей профессиональной деятельности.

1.4 Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды формируемых компетенций	Наименования формируемых компетенций
ОПК-11	Способен организовывать разработку и применение алгоритмов и современных цифровых программных методов расчетов и проектирования отдельных устройств и подсистем мехатронных и робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники в соответствии с техническим заданием, разрабатывать цифровые алгоритмы и программы управления робототехнических систем
ОПК-12	Способен организовывать монтаж, наладку, настройку и сдачу в эксплуатацию опытных образцов мехатронных и робототехнических систем, их подсистем и отдельных модулей
ПК-6	Способен разрабатывать архитектуру гибких производственных систем в машиностроении

2 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Вклад дисциплины в формирование результатов обучения выпускника (компетенций) и достижение обобщенных результатов обучения происходит путём освоения содержания обучения и достижения частных результатов обучения, описанных в данном разделе.

2.1 Содержание учебной дисциплины

Номер тем	Наименование тем	Содержание	Коды форми- руемых ком- петенций
1	Общие сведения о принци- пах программирования ав- томатизированных систем управления промышлен- ными установками, промышленными роботами и автоматическими линия- ми.	Значение автоматизация и роботизации производственных процессов. Принципы программирования и примеры реализации современных систем управления оборудованием и процессами обработки. Автоматизированные комплексы с микроконтроллерами и ЭВМ для управления качеством обработки.	ОПК-11,12 ПК-6
2	Применение программируемых логических контроллеров для систем управления промышленным оборудованием.	Многоуровневый процесс построение систем управления промышленным автоматизированным оборудованием. Выбор базы для построения системы. Функциональные требования к контроллеру. Специализированные функции управления процессами обработки.	ОПК-11,12 ПК-6
3	Методы и средства адаптации промышленных роботов.	Геометрическая и технологическая адаптация. Корректировка программы. Технологическая необходимость применения сенсоров. Конструкции и принцип действия. Универсализация специализированных сенсоров. Сенсорное управление. Проблемы внедрения сенсоров.	ОПК-11,12 ПК-6
4	Нейроинформатика и нейроуправление. Методы	Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей,	ОПК-11,12 ПК-6

нейроуправления.	реализованных на компьютере. Нейроуправление	
	как частный случай интеллектуального управле-	
	ния, использующий искусственные нейронные се-	
	ти для решения задач управления динамическими	
	объектами. Классификация методов нейроуправле-	
	ния.	

2.2 Учебно-методическая карта учебной дисциплины

2.2.1 Учебно-методическая карта учебной дисциплины очной формы обучения

№ недели	Лекции (наименование тем)	Часы	Практические занятия	Часы	Лабораторные занятия	Часы	Самостоятельная работа, часы	Форма контроля знаний
1	Тема 1. Общие сведения о принципах программирования автоматизированных систем управления промышленными установками, промышленными роботами и автоматическими линиями	2	Пр. р. 1. Изучение языка программирования и разработка программ для промышленного робота Kawasaki RS03N	2	Лаб. р. 1. Оффлайн программирование промышленной робототехнической системы на базе робота Kawasaki RS03N	2	6	
2			Пр. р. 1. Изучение языка программирования и разработка программ для промышленного робота Kawasaki RS03N	2	Лаб. р. 1. Оффлайн программирование промышленной робототехнической системы на базе робота Kawasaki RS03N	2	6	
3	Тема 1. Общие сведения о прин- ципах программирования автома- тизированных систем управления промышленными установками, промышленными роботами и ав- томатическими линиями	2	Пр. р. 1. Изучение языка программирования и разработка программ для промышленного робота Kawasaki RS03N	2	Лаб. р. 1. Оффлайн про- граммирование промыш- ленной робототехниче- ской системы на базе робота Kawasaki RS03N	2	6	
4			Пр. р. 1. Изучение языка программирования и разработка программ для промышленного робота Kawasaki RS03N	2	Лаб. р. 1. Оффлайн программирование промышленной робототехнической системы на базе робота Kawasaki RS03N	2	6	ЗПР ЗЛР
5	Тема 2. Применение программируемых логических контроллеров для систем управления промышленным оборудованием	2	Пр. р. 2. Изучение языка программирования и разработка программ для промышленного робота FANUC M-710iC/50		Лаб. р. 2. Оффлайн программирование промышленной робототехнической системы на базе робота FANUC М-710iC/50	2	6	
6			Пр. р. 2. Изучение языка программирования и разработка программ для промышленного робота FANUC M-710iC/50	2	Лаб. р. 2. Оффлайн программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50	2	6	
7	Тема 2. Применение программируемых логических контроллеров для систем управления промышленным оборудованием	2	Пр. р. 2. Изучение языка программирования и разработка программ для промышленного робота FANUC M-710iC/50	2	Лаб. р. 2. Оффлайн программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50	2	6	
8			Пр. р. 2. Изучение языка программирования и разработка программ для промышленного робота FANUC M-710iC/50		Лаб. р. 2. Оффлайн программирование промышленной робототехнической системы на базе робота FANUC М-710iC/50	2	6	ЗПР ЗЛР

	Тема 3. Методы и средства адап-		Пр. р. 3. Применение сен-		Лаб. р. 3. Программиро-			
9	тации промышленных роботов	2	соров для решения задач управления промышлен- ным роботом	2	вание промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций сварки	2	6	
10			Пр. р. 3. Применение сенсоров для решения задач управления промышленным роботом	2	Лаб. р. 3. Программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций сварки	2	6	
11	Тема 3. Методы и средства адаптации промышленных роботов	2	Пр. р. 3. Применение сенсоров для решения задач управления промышленным роботом	2	Лаб. р. 3. Программирование промышленной робототехнической си-	2	6	
12			Пр. р. 3. Применение сенсоров для решения задач управления промышленным роботом	2	Лаб. р. 3. Программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций сварки	2	6	ЗПР ЗЛР
13	Тема 4. Нейроинформатика и нейроуправление. Методы нейроуправления	2	Пр. р. 4. Применение нейронных сетей для решения задач управления промышленным роботом	2	Лаб. р. 4. Программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций фрезерования	2	6	
14			Пр. р. 4. Применение нейронных сетей для решения задач управления промышленным роботом	2	Лаб. р. 4. Программирование промышленной робототехнической си-	2	6	
15	Тема 4. Нейроинформатика и нейроуправление. Методы нейроуправления	2	Пр. р. 4. Применение нейронных сетей для решения задач управления промышленным роботом	2	Лаб. р. 4. Программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций фрезерования	2	6	
16			Пр. р. 4. Применение нейронных сетей для решения задач управления промышленным роботом	2	Лаб. р. 4. Программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций фрезерования	2	10	ЗПР ЗЛР
17								ПА (зачет)
	Итого	16		32		32	100	(34 101)

Принятые обозначения: 3ЛР – защита лабораторной работы; 3ПР – защита практической работы; ПА – промежуточная аттестация.

2.2.2 Учебно-методическая карта учебной дисциплины заочной формы обучения

Лекции (наименование тем)	Часы	Практические занятия	Часы	Лабораторные занятия	Часы	Форма контроля знаний
Tema 1. Общие сведения о принципах программирования автоматизированных систем управления промышленными установками, промышленными роботами и автоматическими линиями		Пр. р. 1. Изучение языка программирования и разработка программ для промышленного робота Kawasaki RS03N	2	Лаб. р. 3. Программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций сварки	2	3ЛР 3ПР
Тема 2. Применение программируемых логических контроллеров для систем управления промышленным оборудованием.		Пр. р. 2. Изучение языка программирования и разработка программ для промышленного робота FANUC M-710iC/50	2	Лаб. р. 4. Программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций фрезерования	2	
		Пр. р. 2. Изучение языка программирования и разработка программ для промышленного робота FANUC M-710iC/50	2	Лаб. р. 4. Программирование промышленной робототехнической системы на базе робота FANUC M-710iC/50 для выполнения операций фрезерования	2	3ЛР 3ПР
						ПА (зачет)
Итого	4		6		6	

3 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Применение форм и методов проведения занятий при изучении различных тем курса представлено в таблице.

No		Bı	Всего		
п/п	Форма проведения занятия	Лекции	Практические	Лабораторные	
11/11		лекции	занятия	занятия	часов
1	Мультимедиа	Темы 1-4			16
2	С использованием ЭВМ		Пр. р. 1-4	Лаб. р. 1-4	64
	ИТОГО	16	32	32	80

4 ОЦЕНОЧНЫЕ СРЕДСТВА

Используемые оценочные средства по учебной дисциплине представлены в таблице и хранятся на кафедре.

№	Вид оценочных средств	Количество
п/п		комплектов
1	Перечень контрольных вопросов к защите лабораторных работ	4
2	Перечень контрольных вопросов к защите практических работ	4
3	Вопросы к зачету	1

5 МЕТОДИКА И КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ СТУДЕНТОВ

5.1 Уровни сформированности компетенций

№ п/п	Уровни сформированности компетенции	Содержательное описание уровня	Результаты обучения
грамм тоте средсі	11 Способен организовыван ных методов расчетов и п хнических систем с исполь тв автоматики, измерите	ть разработку и применение алгоритмо проектирования отдельных устройств и взованием стандартных исполнительных исполнительных исполнительных исполнительных исполнительной техники в соогитмы и программы управления роботом	и подсистем мехатронных и робо- ых и управляющих устройств, тветствии с техническим заданием,
	-	инципы программирования мехатронні	ых модулей с использованием совре-
менні	ых программных продукто		D 5
1	Пороговый уровень	ства проектирования устройств и подсистем мехатронных и робото- технических систем.	Владеет базовыми знаниями о существующих средствах программирования автоматизированных систем управления промышленной робототехникой.
2	Продвинутый уровень	Применяет программный инструментарий разработки технического и программного обеспечения мехатронных и робототехнических си-	Может с помощью специализирован- ного программного обеспечения осу- ществлять настройку и создание управляющих программ для промыш- ленных робототехнических систем.
3	Высокий уровень	Способен в комплексном виде использовать стандартные исполнительные и управляющие устройства, средства автоматики, измерительной техники для создания устройств и систем ме-	Способен самостоятельно в соответствии с техническим заданием разрабатывать программное обеспечение для робототехнических систем различного уровня сложности и назначения.
			владеет базовыми знаниями об основных тенденциях развития промышленного оборудования в области роботех-
2	Продвинутый уровень	по сдаче в эксплуатацию опытных образцов мехатронных и робототех-	нических систем. Может в соответствии с конструкторской документацией производить пуско-наладку и отладочное программирование вводимых в эксплуатацию промышленных роботов и систем на их основе.
3	Высокий уровень	жа, наладки, настройки и сдачи в эксплуатацию опытных образцов ме-	В совершенстве умеет использовать навыки работы по организации процессов подготовки вводимых в эксплуатацию промышленных робототехнических систем различного уровня сложности и назначения.
ПК-6	Способен разрабатывать	архитектуру гибких производственных	
		гь специализированные программные	продукты для эмуляции и отладки
	ссса работы гибких произв Пороговый уровень	Знает основные требования к техноло- гическому составу оборудования гиб- ких производственных систем, их ос-	Знает порядок разработки и выбора оборудования для гибких производ-
2	Продвинутый уровень	выборе состава технологического обо-	Может в соответствии с функциональ- ными требованиями и требованиями технических стандартов производить выбор состава технологического обо-

			рудования гибких производственных
			систем.
3	Высокий уровень	Способен в комплексном виде исполь-	Способен самостоятельно разрабаты-
		зовать полученные знания при выборе	вать и производить выбор состава тех-
		состава технологического оборудова-	нологического оборудования гибких
		ния гибких производственных систем,	производственных систем, опираясь на
		опираясь на требуемых функции и	требуемых функции и возможность
		возможность переориентации на вы-	переориентации на выпуск новой про-
		пуск новой продукции.	дукции.

5.2 Методика оценки знаний, умений и навыков студентов

Результаты обучения	Оценочные средства
расчетов и проектирования отдельных устройств и подс ванием стандартных исполнительных и управляющих ус	иие алгоритмов и современных цифровых программных методов систем мехатронных и робототехнических систем с использо- тройств, средств автоматики, измерительной и вычислитель- азрабатывать цифровые алгоритмы и программы управления
робототехнических систем	
Владеет базовыми знаниями о существующих сред-	Перечень контрольных вопросов к защите лабораторных работ
ствах программирования автоматизированных систем	Перечень контрольных вопросов к защите практических работ
управления промышленной робототехникой.	
Может с помощью специализированного программ-	Перечень контрольных вопросов к защите лабораторных работ
ного обеспечения осуществлять настройку и создание	Перечень контрольных вопросов к защите практических работ
управляющих программ для промышленных робото-	
технических систем.	
Способен самостоятельно в соответствии с техниче-	Перечень контрольных вопросов к защите лабораторных работ
ским заданием разрабатывать программное обеспече-	Перечень контрольных вопросов к защите практических работ
ние для робототехнических систем различного уровня	
сложности и назначения.	

	'
	тройку и сдачу в эксплуатацию опытных образцов мехатроннь
и робототехнических систем, их подсистем и отдельны.	
Владеет базовыми знаниями об основных тенденциях	Перечень контрольных вопросов к защите лабораторных работ
развития промышленного оборудования в области	Перечень контрольных вопросов к защите практических работ
роботехнических систем.	
Может в соответствии с конструкторской документа-	Перечень контрольных вопросов к защите лабораторных работ
цией производить пуско-наладку и отладочное про-	Перечень контрольных вопросов к защите практических работ
граммирование вводимых в эксплуатацию промыш-	
ленных роботов и систем на их основе.	
В совершенстве умеет использовать навыки работы	Перечень контрольных вопросов к защите лабораторных работ
по организации процессов подготовки вводимых в	Перечень контрольных вопросов к защите практических работ
эксплуатацию промышленных робототехнических	
систем различного уровня сложности и назначения.	
ПК-6 Способен разрабатывать архитектуру гибких прои	зводственных систем в машиностроении
Знает порядок разработки и выбора оборудования для	Перечень контрольных вопросов к защите лабораторных работ
гибких производственных систем.	Перечень контрольных вопросов к защите практических работ
Может в соответствии с функциональными требования	Перечень контрольных вопросов к защите лабораторных работ
	Перечень контрольных вопросов к защите практических работ
выбор состава технологического оборудования гибких	
производственных систем.	
Способен самостоятельно разрабатывать и производить	Перечень контрольных вопросов к защите лабораторных работ
	Перечень контрольных вопросов к защите практических работ
производственных систем, опираясь на требуемых функ-	
ции и возможность переориентации на выпуск новой	4
продукции.	

5.3 Критерии оценки лабораторных работ

Каждая лабораторная работа должна быть выполнена в соответствии с заданием и защищена. Лабораторная работа считается защищенной, если она выполнена и защищена в срок, установленный планом учебного процесса, с отчетом, оформленным в соответствии с методическими рекомендациями, студентом даны исчерпывающие ответы на заданные вопросы.

5.4 Критерии оценки практических работ

Каждая практическая работа должна быть выполнена в соответствии с заданием и защищена. Практическая работа считается защищенной, если она выполнена и защищена в срок, установленный планом учебного процесса, выполнена в соответствии с методическими указаниями, студентом даны исчерпывающие ответы на заданные вопросы.

5.5 Критерии оценки зачета

Оценка	Критерии	
	Систематизированные, глубокие и полные знания по всем	
	разделам рабочей программы, а также по основным вопросам, выхо-	
	дящим за ее пределы. Точное использование научной тер-	
	минологии.	
	Умение ориентироваться в теориях, концепциях и направле-	
	ниях по изучаемой дисциплине и давать им критическую оценку.	
	Знание современных тенденций в области программирования	
	промышленных робототехнических систем, умение делать выводы и	
	прогнозировать перспективы развития.	
	Достаточно полные и систематизированные знания по всем	
	разделам рабочей программы, использование научной термино-	
Зачтено	логии.	
	Умение ориентироваться в основных теориях, концепциях и	
	направлениях по изучаемой дисциплине и давать им критическую	
	оценку.	
	Знание современных тенденций в области программирования	
	промышленных робототехнических систем.	
	Достаточный объем знаний в рамках образовательного стан-	
	дарта, использование научной терминологии.	
	Умение ориентироваться в основных теориях, концепциях и	
	направлениях по изучаемой дисциплине и давать им оценку.	
	Умение ориентироваться в современных тенденциях области	
	программирования промышленных робототехнических систем.	
	Недостаточно полный объем знаний в рамках образовательного	
Не зачтено	стандарта.	
	Неумение ориентироваться в основных теориях, концепциях и	
	направлениях по изучаемой дисциплине.	

6 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕ-НИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО УЧЕБНОЙ ДИСЦИ-ПЛИНЕ

Самостоятельная работа студентов (СРС) направлена на закрепление и углубление освоения учебного материала, развитие практических умений. СРС включает следующие виды самостоятельной работы студентов:

- изучение нормативных документов;
- исследовательская работа, в том числе научно-исследовательская;
- обзор литературы;

- ответы на контрольные вопросы;
- перевод с иностранных языков;
- подготовка к аудиторным занятиям;
- работа со справочной литературой и словарями;
- участие в научных и практических конференциях;
- чтение текста (первоисточника, учебника, дополнительной литературы).

Перечень контрольных вопросов к защите лабораторных и практических работ и заданий для самостоятельной работы студентов приведен в приложении и хранится на кафедре.

Для СРС рекомендуется использовать источники, приведенные в п. 7.

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

7.1 Основная литература

Л П/	<u>√</u> Ω	Библиографическое описание	Гриф	Кол-во экз-в / URL
1		ИНФРА-М, 2022. – 223 с. – Текст: электронный.	Допущено УМО по образованию в области автоматизированного машиностроения в качестве учебного пособия для студентов высших учебных заведений	https://znanium.com/catalog/ product/1842546
2	2	Иванов, А. А. Модернизация промышленных предприятий на базе современных систем автоматизации и управления: учебное пособие / А.А. Иванов. — Москва: ФОРУМ: ИНФРА-М, 2020. — 384 с. — Текст: электронный.	в области автоматизированного машиностроения в качестве	https://znanium.com/catalog/ product/1020660

7.2 Дополнительная литература

№ п/п	Библиографическое описание	Гриф	Кол-во экз-в / URL
1	тов: учебное пособие для студентов вузов / Ю. Г. Козырев. – Москва: Кнорус, 2016. – 494 с.	Допущено УМО по образованию в области автоматизированного машиностроения в качестве учебного пособия для студентов высших учебных заведений	10
2	Лебедев, С. К. Кинематика и динамика электромехатронных систем в робототехнике: учебное пособие / С. К. Лебедев, А. Р. Колганов. — Москва; Вологда: Инфра-Инженерия, 2021 352 с. — Текст: электронный.		https://znanium.com/catalog/ product/1831994
3	Юревич, Е. И. Основы робототехники : учебное пособие / Е. И. Юревич. – 4-е изд., перераб. и доп. – Санкт-Петербург : БХВ-Петербург, 2017. – 304 с. – Текст : электронный.		https://znanium.com/catalog/ product/1858461
	**	Допущено УМО по образованию в области автоматизированного машиностроения в качестве учебного пособия для студентов высших учебных заведений	https://znanium.com/catalog/ product/1225064
5	Тимохин, А. Н. Моделирование систем управления с применением MatLab: учебное пособие / А.Н. Тимохин, Ю.Д. Румянцев; под ред. А.Н. Тимохина. – Москва: ИНФРА-М, 2021. – 256 с. – Текст: электронный.	_	https://znanium.com/catalog/ product/1515059

7.3 Перечень ресурсов сети Интернет по изучаемой дисциплине

https://www.fanuc.eu/ru/ru – официальный сайт компании FANUC;

https://robotics.kawasaki.com — официальный сайт подразделения Robotics компании Kawasaki;

https://new.siemens.com/ru/ru/produkty/avtomatizacia/industry-software/automation-software/tia-portal/programmnoe-obespechenie.html — раздел на официальном сайте компании Siemens посвященный программному продукту TIA Portal.

7.4 Перечень наглядных и других пособий, методических рекомендаций по проведению учебных занятий, а также методических материалов к используемым в образовательном процессе техническим средствам

7.4.1 Методические рекомендации

- 1. **Шеменков, В.М.** Программирование промышленных робототехнических систем: методические рекомендации к лабораторным работам для магистрантов направления подготовки 15.04.06 «Мехатроника и робототехника» / В.М. Шеменков, Е.Ю. Демиденко. Могилев : Белорусско-Российский университет, 2021. 48 с. (электронный вариант).
- 2. **Шеменков, В.М.** Программирование промышленных робототехнических систем: методические рекомендации к практическим занятиям для магистрантов направления подготовки 15.04.06 «Мехатроника и робототехника» / В.М. Шеменков, Е.Ю. Демиденко. Могилев : Белорусско-Российский университет, 2021. 48 с. (электронный вариант).

7.4.2 Информационные технологии

Темы лекционных занятий, обеспеченные мультимедийными презентациями:

- Тема 1. Общие сведения о принципах программирования автоматизированных систем управления промышленными установками, промышленными роботами и автоматическими линиями.
- Тема 2. Применение программируемых логических контроллеров для систем управления промышленным оборудованием.
 - Тема 3. Методы и средства адаптации промышленных роботов.
 - Тема 4. Нейроинформатика и нейроуправление. Методы нейроуправления.

7.4.3 Перечень программного обеспечения, используемого в образовательном процессе

При проведении лабораторных и практических работ, используется программное обеспечение:

1. K-ROSET — это программное обеспечение Kawasaki для моделирования промышленных роботов.

Лицензия: Коммерческая. Версия: 1.6.6.10536.

2. RFA Vision – это программное обеспечение предназначеное для создания систем технического зрения для промышленных роботов.

Лицензия: Коммерческая. Версия: 4.7.0.2.

3. TIA Portal (Totally Integrated Automation Portal) – интегрированная среда разработки программного обеспечения систем автоматизации технологических процессов от уровня приводов и контроллеров до уровня человеко-машинного интерфейса.

Лицензия: Академическая. Версия: V14 SP1.

8 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИ-ПЛИНЫ

Материально-техническое обеспечение дисциплины содержится в паспорте лаборатории «Робототехники», рег. номер ПУЛ-4.441-701/7-20 и в паспорте лаборатории «Плазменные, термомеханические и сварочные технологии» рег. номер ПУЛ-4.441-002/7-20.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ (магистратура)

по учебной дисциплине <u>«Программирование промышленных</u> <u>робототехнических систем»</u>

направление подготовки <u>15.04.06 «Мехатроника и робототехника»</u> направленность (профиль) Промышленная и мобильная робототехника квалификация <u>магистр</u>

на 2022-2023 учебный год

Дополнений и изменений нет

Учебная программа пересмотрена и одобрена на заседании кафедры «Технология машиностроения» протокол № 11 от «18» апреля 2022 г. (название кафедры)

Заведующий кафедрой: канд. техн. наук, доцент

В.М. Шеменков

УТВЕРЖДАЮ

Декан машиностроительного факультета

канд. техн. наук, доцент

«<u>1</u>Д» <u>0</u>6 2022 г.

Д.М. Свирепа

СОГЛАСОВАНО:

Ведущий библиотекарь

Начальник учебно-методического отдела

«<u>10</u>» <u>05</u> 2022 г.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ УВО

учебной «Программирование промышленных ПО дисциплине робототехнических систем»

направление подготовки 15.04.06 Мехатроника и робототехника

на 2023-2024 учебный год

№№ ПП	Дополнения и изменения	Основание
1	Пункт 4.7.1 Методические рекомендации изложить в новой редакции: 1. Программирование промышленных робототехнических систем: Методические рекомендации к лабораторным работам для студентов направления подготовки 15.04.06 «Мехатроника и робототехника» очной и заочной форм обучения / Сост. В. М. Шеменков, Е. Ю. Демиденко. — Могилёв: БелорусРос. ун-т, 2023. — 16 с. (36 экз.) 2. Программирование промышленных робототехнических систем: Методические рекомендации к практическим заданиям для студентов направления подготовки 15.04.06 «Мехатроника и робототехника» очной и заочной форм обучения / Сост. В. М. Шеменков, Е. Ю. Демиденко. — Могилёв: БелорусРос. ун-т, 2023. —	Сводный план приказ № 4 от 25.11.2022г.

Учебная программа пересмотрена и одобрена на заседании кафедры «Технология машиностроения» (название кафедры-разработчика программы)

(протокол № 13 от «10» апреля 2023)

Заведующий кафедрой канд. техн. наук, доцент (ученая степень, ученое звание)

В. М. Шеменков

УТВЕРЖДАЮ

Декан машиностроительного факультета (название факультета, выпускающего по данной специальности)

> канд. техн. наук, доцент (ученая степень, ученое звание)

Д. М. Свирепа

2023 «12» 05

СОГЛАСОВАНО:

Ведущий библиотекарь

Начальник учебнометодического отдела

О. Е. Печковская «10» 05