УДК 621.866.12 СВЯЗИ МЕЖДУ ДЛИНАМИ ЗВЕНЬЕВ ПРИ ОПТИМИЗАЦИИ РЫЧАЖНЫХ МЕХАНИЗМОВ

А. В. ДЕМОКРИТОВА, В. Н. ДЕМОКРИТОВ Государственное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Ульяновск, Россия

Ранее был рассмотрен основной алгоритм оптимизации рычажного механизма. Один из последних его этапов – варьирование длин звеньев был только назван.

В настоящей публикации описаны связи между длинами звеньев, входящие в систему ограничений.

Пусть имеется рычажный подъемник в виде четырехзвенника (рис. 1), где груз навешивается в точке $B_{\scriptscriptstyle 0}$, а после поворота кривошипа OA = r и балансира BC = r отцепляется в точке $B_{\scriptscriptstyle 1}$, после чего кривошип продолжает вращение, а качающийся балансир возвращается в исходное положение.

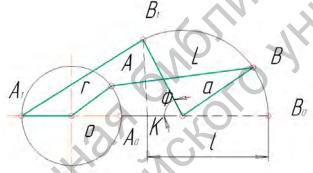


Рис. 1. Шарнирный четырехзвенник

При таком замысле расстояние между центрами вращения кривошипа и балансира OC = r + L - a (1)

Для полного поворота кривошипа необходимо $r + OC \prec L - a$, откуда с учетом (1)

Соотношения (1) и (2) учитываются при варьировании длин звеньев.

Представляет интерес определения расстояния ${\rm KB}_{\it o}$ между точками навешивания и отцепления груза.

Из $\Delta A_1 B_1 C_1$ по теореме косинусов

$$L^{2} = a^{2} + (r + OC)^{2} - 2a(r + OC)\cos \varphi,$$
откуда
$$\cos \varphi = \frac{a^{2} + (r + OC)^{2} - L^{2}}{2a(r + OC)}.$$

Тогда искомая величин

$$KB_0 = l = a(1 + \cos \varphi) . \tag{3}$$

Если *1* задано, то входит в систему ограничений при вариации длин. Если *1* не задано, то оно определяется после оптимизации.