1990
 ЖУРНАЛ ТЕХНИЧЕСКОЙ ФИЗИКИ
 Том 60, в. 2

 1990
 JOURNAL OF TECHNICAL PHYSICS
 Vol. 60, N 2

06 © 1990 r.

АНИЗОТРОПИЯ ТОНКОПЛЕНОЧНЫХ ВОЛНОВОДОВ ИЗ ОПТИЧЕСКИХ СТЕКОЛ

В. Н. Могилевич, В. П. Редько, А. А. Романенко, А. В. Хомченко

Экспериментально и теоретически исследованы тонкопленочные анизотропные волноводы, полученные наклонным напылением аморфных материалов на изотропные подложки. Показано, что посредством регулирования напряжения смещения на мишени и угла напыления можно получать волноводы с заранее заданными параметрами анизотропии. Установлено, что поляризация гибридных мод, возбуждающихся в ортогопальном оптической оси направлении, является квазиоднородной и существенно зависит от длины волны.

Введение

Исследования механизма роста тонких пленок при наклонном осаждении оксидных материалов на диэлектрические подложки показали, что выращенные иленки имеют столбчатую структуру, ориентация элементов которой закономерно связана с углом осаждения распыляемого материала на подложку [^{1, 2}]. Оптические свойства таких пленок оказались подобными свойствам пленок из анизотропного материала, тензор диэлектрической проницаемости которого ориентирован так, что одна из его главных осей совпадает с направлением роста столбчатых элементов, другая компланарна пленке, третья, очевидно, ортогональна первым двум. Таким образом, методом наклонного осаждения оказалось возможным выращивать оптически анизотропные пленки с прогнозируемой ориентацией тензора диэлектрической проницаемости. При удачном подборе материала подложки и распыляемой мищени данным методом можно изготавливать оптические волноводы с анизотропной волноведущей пленкой. Такие волноводы, выращенные наклонным осаждением оксидных материалов на стеклянные подложки, являются предметом обсуждения настоящей статьи.

1. Изготовление и экспериментальное исследование волноводов

Для изготовления волноводов применялась планарная ВЧ распылительная система. В качестве мишеней были выбраны полированные диски из оптических стекол КВ и ЛКЗ, а также изготовленные горячим прессованием диски из Al₂O₃. Подложками служили полированные плоскопараллельные пластинки из оптических стекол КВ и К8. Подложки и выбранная мишень ориептировались под углом ф друг к другу (рис. 1) в рабочей камере системы. Напыление осуществлялось в атмосфере аргона и кислорода в соотношении 3:1, температура подложек при этом не превышала 200 °С.

Экспериментальное исследование изготовленных волноводов проводилось по традиционной схеме. Излучение лазера с длиной волны $\lambda = 0.6328$ мкм после прохождения через поляризатор вводилось в волновод призменным элементом связи с показателем преломления n = 1.65708. Аналогичная призма выводила излучение из волновода, которое после прохождения через анализатор попадало на фотоприемник. В процессе эксперимента измерялись волноводные показатели преломления n_m мод, удерживаемых волноводами при возбуждении в *у*- и *z*-направлениях (рис. 1), а также исследовалась поляризация выходящего из волноводов излучения.

Характерным для всех изготовленных волноводов являлось то, что при возбуждении в у-направлении они удерживали моды двух типов, у которых отсутствовали соответствению x- и z-компоненты вектора напряженности электрического поля. Об этом свидетельствовал тот факт, что анализатор гасил излучение каждой моды, когда его плоскость пропускания составляла с осыю

ог угол ψ_m , равный () либо 90°. При возбуждении волноводов в z-направлении наблюдались моды, которые после вывода из волноводов гасились анализатором, ориентированным к оси оу под углами ψ_m , отличными от () и 90°. Результаты экспериментальных измерений для волноводов, цзготовленных осаждением материала мишени из стекла КВ на подложки из аналогичного стекла при трех значениях угла осаждения φ и трех значениях времени осаждения t, представлены в табл. 1.

Полученные экспериментальные дапные использовались для расчета параметров волноводов толщин и элементов тензора диэлектрической про-

Рис. 1. Геометрия волновода и взаимное расположение подложки (2) и мишени (1) в процессе нанесения пленки (3).

ницаемости волноводных пленок. Для этого предварительно проводился теоретический анализ анизотропного волновода, состоящего из однородной анизотропной пленки и изотропной подложки. Рассматривалась задача восстановле-

Угол напыления Ф, град	Время напыления <i>t</i> , ч	2-Направление							
		n_1	n_2	ns	n_4	ψı	ψ ₂	ψ ₃	ψ.
0	6	1.4568	1.4565	4 4500		90	0		-
20	18 6 11	1.4680 1.4582 1.4606	1.4677 1.4580 1.4604		1.4581	90 85 82		90	
40	18 6 11	$\begin{array}{c} 1.4679 \\ 1.4570 \\ 1.4589 \end{array}$	$\begin{array}{c} 1.4674 \\ 1.4568 \\ 1.4587 \end{array}$	1.4603 — —	1.4601	10 82 80	$ -78 \\ 10 \\ -12$	16	-75
	18	1.4656	1.4652	1.4569	1.4568	18	-70	20	-72

Таблица 1

Таблица 1 (продолжение)

Угол	Время	у-Направление					
напыления 9, град	напыления t, ч	n_1	n2	n_{3}	n.		
0	6 18	1.4568 1.4681	1.4566 1.4678	1 4582	1 4581		
20	6 11	1.4583 1.4606	1.4581				
40	18 6 11	1.4678 1.4570 1.4587 1.4656	1.4675 1.4568 1.4586 4.4652				
	10	1.4000	1.4053	1.4570	1.4569		

ния параметров пленки по известным значениям волноводных показателей преломления и поляризаций мод, удерживаемых волноводом в *y*- и *z*-направлениях.

2. Определение параметров волноводов

Рассмотрим тонкопленочный волновод, показанный на рис. 1. Обозначим через є' и є'' диэлектрические проницаемости соответственно граничной среды (x > d) и подложки (x < 0), через є — тензор диэлектрической проницаемости волноведущей пленки (0 < x < d). Введем в рассмотрение орты e_1 , e_2 , e_3 собственной системы координат (или главных осей) тензора є, а также его главные значения ε_1 , ε_2 , ε_3 , позволяющие записать тензор є в инвариантной форме

$$\varepsilon = \sum_{i=1}^{3} \varepsilon_i \mathbf{e}_i \cdot \mathbf{e}_i, \tag{1}$$

где $\mathbf{e}_i \cdot \mathbf{e}_i$ — диады [³].

Тензор диэлектрической проницаемости всей волноведущей структуры можно теперь представить в виде

$$\hat{\varepsilon} = \sum_{i=1}^{3} \left[\varepsilon''^{0} \left(-\frac{x}{d} \right) + \varepsilon_{i} \theta \left(\frac{x}{d} \right) \theta \left(1 - \frac{x}{d} \right) + \varepsilon' \theta \left(\frac{x}{d} - 1 \right) \right] \mathbf{e}_{i} \cdot \mathbf{e}_{i}, \tag{2}$$

где θ (. . .) — функция Хевисайда.

Пусть в у-направлении волновод удерживает два типа мод, у которых отсутствуют соответственно x- и z-компоненты вектора электрического поля E. Данное требование, согласующееся с экспериментальными наблюдениями, накладывает ограничение на ориентацию тензора ε . Моды с поляризацией $E_x \equiv 0$ и $H_x \equiv 0$ соответственно могут распространяться лишь в том случае, когда одна из главных осей тензора диэлектрической проницаемости волновода совпадает по направлению с осью ог [4]. В этой связи, не нарушая общности дальнейшего рассмотрения, будем считать, что \mathbf{e}_3 является ортом оси ог, а орт \mathbf{e}_1 образует угол а ($0 \leq \alpha \leq 90^\circ$) с координатной осью ог. Поставим задачу определения ε_1 , ε_2 , ε_3 , α и d по спектрам волноводных показателей преломления n_m мод, удерживаемых волноводом в y- и z-направлениях.

Обозначим через \hat{e}_{xx} , \hat{e}_{xy} , \hat{e}_{yy} элементы тензора \hat{e} в системе координат волновода, связанные с его главными значениями \hat{e}_1 , \hat{e}_2 , \hat{e}_3 посредством соотношений

$$\hat{\varepsilon}_{xx} = \hat{\varepsilon}_1 \cos^2 \alpha + \hat{\varepsilon}_2 \sin^2 \alpha, \quad \hat{\varepsilon}_{xy} = \frac{1}{2} \left(\hat{\varepsilon}_1 - \hat{\varepsilon}_2 \right) \sin 2\alpha,$$
$$\hat{\varepsilon}_{yy} = \hat{\varepsilon}_1 \sin^2 \alpha + \hat{\varepsilon}_2 \cos^2 \alpha_{\bullet} \tag{3}$$

1. Для мод, распространяющихся в у-направлении система уравнений Максвелла сводится к уравнениям второго порядка

$$[\nabla_x^2 + k^2 (\hat{\mathbf{e}}_3 - n_m^2)] E_z = 0, \tag{4}$$

$$\left[\left(\nabla_x + ikn_m \frac{\hat{\varepsilon}_{xy}}{\hat{\varepsilon}_{xx}} \right) \frac{\hat{\varepsilon}_{xx}}{\hat{\varepsilon}_1 \hat{\varepsilon}_2} \left(\nabla_x + ikn_m \frac{\hat{\varepsilon}_{xy}}{\hat{\varepsilon}_{xx}} \right) + k^2 \left(1 - \frac{n_m^2}{\hat{\varepsilon}_{xx}} \right) \right] H_s = 0 \tag{5}$$

относительно z-компонент векторов напряженности электрического E и магнитного H полей соответственно. При этом x- и y-компоненты выражаются через E_z и H_z по формулам

$$E_{x} = \frac{(kn_{m}\hat{\epsilon}_{\mu y} - i\hat{\epsilon}_{xy}\nabla_{x})H_{z}}{k\hat{\epsilon}_{1}\hat{\epsilon}_{2}}, \quad H_{x} = -n_{m}E_{z}, \tag{6}$$

$$E_{y} = \frac{(-kn_{m}\hat{\varepsilon}_{xy} + i\hat{\varepsilon}_{xx}\nabla_{x}) H_{z}}{k\hat{\varepsilon}_{1}\hat{\varepsilon}_{2}}, \quad H_{y} = -\frac{\iota}{k}\nabla_{x}E_{z}.$$
(7)

В выражениях (4)—(7) i — мнимая единица, k — волновое число вакуума; ∇_x — оператор дифференцирования по x, действующий па все стоящие справа от него функции.

Уравнения (4), (5) незавпсимы, что указывает на независимость типов мод, описывающихся данными уравнениями. Уравнением (4) описываются *TE*моды анизотропного волновода с равными нулю компонентами полей H_s , E_x и E_y . Соответственно уравнением (5) описываются TM-моды, у которых отсутствуют компоненты полей E_z , H_x и H_y . Волноводные решения уравнений (4), (5) имеют соответственно вид

$$E_{z} = \exp\left(\mathbf{x}''x\right)\cos\eta_{0}\theta\left(-\frac{x}{d}\right) + \cos\left(\mathbf{x}_{0}x - \eta_{0}\right)\theta\left(\frac{x}{d}\right)\theta\left(1 - \frac{x}{d}\right) + \exp\left[\mathbf{x}'\left(d - x\right)\right]\cos\left(\mathbf{x}_{0}d - \eta_{0}\right)\theta\left(\frac{x}{d} - 1\right), \tag{8}$$

$$\varkappa_0 d = \operatorname{arctg} \frac{\varkappa'}{\varkappa_0} + \operatorname{arctg} \frac{\varkappa''}{\varkappa_0} + m\pi \tag{9}$$

 $H_{z} = \exp(\varkappa'' x) \cos \eta_{e}^{\theta} \left(-\frac{x}{d}\right) + \exp\left[-ikxn_{m}\frac{\varepsilon_{1}-\varepsilon_{2}}{\varepsilon_{1}\varepsilon_{2}}\sin 2\alpha\right] \times \\ \times \cos\left(\varkappa_{e}x - \eta_{e}\right) \vartheta\left(\frac{x}{d}\right) \vartheta\left(1 - \frac{x}{d}\right) + \exp\left[\varkappa'\left(d - x\right)\right] \cos\left(\varkappa_{e}d - \eta_{e}\right) \vartheta\left(\frac{x}{d} - 1\right), \quad (10)$

$$x_{e}d = \operatorname{arctg} \frac{\overline{\varepsilon}_{3} x''}{\varepsilon'' \varepsilon_{xx} x_{e}} + \operatorname{arctg} \frac{\overline{\varepsilon}_{3} x'}{\varepsilon' \varepsilon_{xx} x_{e}} + m\pi, \qquad (11)$$

где

H

$$\begin{aligned} \kappa_{0} &= k \sqrt{\varepsilon_{3} - n_{m}^{2}} , \quad \kappa_{e} = k \sqrt{\overline{\varepsilon}_{3} (\varepsilon_{xx} - n_{m}^{2})} ,\\ \kappa' &= k \sqrt{n_{m}^{2} - \varepsilon'} , \quad \kappa'' = k \sqrt{n_{m}^{2} - \varepsilon''} ,\\ \eta_{0} &= \operatorname{arctg} \frac{\kappa''}{\kappa_{0}} , \quad \eta_{e} = \operatorname{arctg} \frac{\overline{\varepsilon}_{3} \kappa''}{\varepsilon'' \varepsilon_{xx} \kappa_{e}} ,\\ \varepsilon_{3} &= \varepsilon_{1} \varepsilon_{2} , \quad \varepsilon_{xx} = \varepsilon_{1} \cos^{2} \alpha + \varepsilon_{2} \sin^{2} \alpha , \quad m = 0, \ 1, \ 2, \ \dots . \end{aligned}$$

Характеристические уравнения (9) п (11) связывают волноводные показатели преломления n_m TE- и TM-мод с параметрами волноведущей пленки ε_3 , d и ε_{xx} , ε_3 , d соответственно. Естественно, что именио параметры ε_3 , ε_{xx} , ε_3 и d могут быть рассчитаны из (9) и (11) по известным значениям волноводных показателей преломления либо двух TE- и двух TM-мод, либо одной TEи трех TM-мод. Однако нетрудно убедиться, что полученной таким образом информации о параметрах волноведущей пленки иедостаточно для однозначного установления вида тензора диэлектрической проницаемости ε . Это связано с невозможностью однозначного определения главных значений ε_1 , ε_2 и ориентационного угла α , исходя из системы лишь двух уравнений (12) относительно этих параметров. Дополнительную информацию можно получить, например, анализируя моды, возбуждающиеся в *z*-направлении.

2. Для мод, распространяющихся в z-направлении, система уравнений Максвелла сводится к связанным уравнениям второго порядка

$$\left[\nabla_x \frac{1}{\hat{\varepsilon}_3} \nabla_x + k^2 \left(1 - \frac{n_m^2}{\varepsilon_{xx}}\right)\right] H_y = -k^2 n_m \frac{\hat{\varepsilon}_{xy}}{\hat{\varepsilon}_{xx}} E_y, \tag{13}$$

$$\left[\nabla_{\hat{x}}^{2} + k^{2} \left(\frac{\hat{\varepsilon}_{1} \hat{\varepsilon}_{2}}{\hat{\varepsilon}_{xx}} - n_{m}^{2}\right)\right] E_{y} = -k^{2} n_{m} \frac{\hat{\varepsilon}_{xy}}{\hat{\varepsilon}_{xx}} H_{y}, \tag{14}$$

относительно у-компонент векторов Е и H. При этом x- и z-компоненты выражаются через E_y и H_y по формулам

$$E_x = \frac{1}{\hat{\varepsilon}_{xx}} \left(n_m H_y - \hat{\varepsilon}_{xy} E_y \right), \quad H_x = -n_m E_y, \tag{15}$$

$$E_z = \frac{1}{k\hat{\varepsilon}_3} \nabla_x H_y, \quad H_z = -\frac{i}{k} \nabla_x E_y. \tag{16}$$

Волноводные решения уравнений (13), (14) могут быть представлены

$$-E_{y} = \sqrt{\gamma} \left[\left(\alpha_{021} - \alpha_{e21} \right) \left(\varphi_{01} + \gamma \varphi_{e1} \right) - \left(\alpha_{011} + \gamma \alpha_{e11} \right) \left(\varphi_{02} - \varphi_{e2} \right) \right], \tag{17}$$

$$\begin{aligned} H_{y} &= \sqrt{\varepsilon_{3}} \left[(\alpha_{011} + \gamma \alpha_{e11}) (\varphi_{e2} + \gamma \varphi_{02}) - \gamma (\alpha_{021} - \alpha_{e21}) (\varphi_{01} - \varphi_{e1}) \right], \\ (\alpha_{011} + \gamma \alpha_{e11}) (\alpha_{e22} + \gamma \alpha_{022}) - \gamma (\alpha_{021} - \alpha_{e21}) (\alpha_{012} - \alpha_{e12}) = 0, \end{aligned}$$

где

$$\varphi_{kq} = \frac{1}{\varkappa_k \cos \eta_{kq}''} \left\{ \sin \eta_{kq}'' \exp \left(\varkappa'' x \right) \theta \left(-\frac{x}{d} \right) + \sin \left(\varkappa_k x + \eta_{kq}'' \right) \times \right. \\ \left. \times \left. \vartheta \left(1 - \frac{x}{d} \right) \theta \left(\frac{x}{d} \right) + \sin \left(\varkappa_k d + \eta_{kq}'' \right) \exp \left[\varkappa' \left(d - x \right) \right] \theta \left(\frac{x!}{d} - 1 \right) \right] \right\},$$
(20)

$$\alpha_{kpq} = \frac{\sin\left(\varkappa_{k}d + \eta_{kp}'' + \eta_{kq}'\right)}{\cos\eta_{kp}'' \sin\eta_{kq}'}, \quad \eta_{kq}^{(p)} = \operatorname{arc} \operatorname{tg}\left[\frac{\varkappa_{k}}{\varkappa^{(p)}} \left(\frac{\varepsilon^{(p)}}{\varepsilon_{\mathfrak{s}}}\right)^{q-1}\right], \quad (21)$$

$$\gamma = \frac{\sqrt{\sigma^2 + 1} - \sigma}{\sqrt{\sigma^2 + 1} + \sigma}, \quad \sigma = \frac{\varepsilon_3 - \varepsilon_3 \varepsilon_{xx} + n_m^2 (\varepsilon_{xx} - \varepsilon_3)}{2n_m \varepsilon_{xy} \sqrt{\varepsilon_3}}, \quad (22)$$

$$\times_0 = k \sqrt{\frac{\gamma \varepsilon_3 - \varepsilon_3 \varepsilon_{xx} - n_m^2 (\gamma \varepsilon_{xx} - \varepsilon_3)}{\varepsilon_{xx} (\gamma - 1)}}, \quad \chi_e = k \sqrt{\frac{\gamma \varepsilon_3 \varepsilon_{xx} - \overline{\varepsilon_3} - n_m^2 (\gamma \varepsilon_3 - \varepsilon_{xx})}{\varepsilon_{xx} (\gamma - 1)}}, \quad \chi^{(p)} = k \sqrt{n_m^2 - \varepsilon^{(p)}}, \quad k = 0; \ e, \ q = 1; \ 2, \ p = 1; \ 2. \quad (23)$$

Соотношение (19) является характеристическим уравнением, связывающим волноводные показатели преломления n_m гибридных мод тонкопленочного анизотропного волновода, длину волны λ и параметры волноведущей пленки.

√ε ₃ α, град	α, град (по данным [⁵])	
.4671 0	0	
.4698 9 .4680 12	11	
.4699 10 .4678 21 .4679 18 .4685 20	23	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Таблица 2

При известных значениях ε_3 , ε_{xx} , $\overline{\varepsilon}_3$ и d из уравнения (19) может быть рассчитана величина ε_{xy} по известному значению волноводного показателя преломления одной из гибридных мод. После этого расчет значений ε_1 , ε_2 и α может быть выполнен по формулам

$$\alpha = \frac{1}{2} \operatorname{arctg} \frac{2\varepsilon_{xx}\varepsilon_{xy}}{\varepsilon_{xx}^2 - \overline{\varepsilon}_3 - \varepsilon_{xy}^2},$$

$$\varepsilon_1 = \varepsilon_{xx} + \varepsilon_{xy} \operatorname{tg} \alpha, \quad \varepsilon_2 = \varepsilon_{xx} - \varepsilon_{xy} \operatorname{clg} \alpha, \quad (24)$$

В табл. 2 представлены результаты расчетов по данным табл. 1, выполненные по изложенной выше методике.

3. Обсуждение результатов

Проведенные расчеты (см. табл. 2) показывают, что выращенные наклопным осаждением аморфных материалов пленки обладают одноосной оптической анизотропией ($\varepsilon = \varepsilon_0 + (\varepsilon_e - \varepsilon_0) \mathbf{e_1} \cdot \mathbf{e_1}$), где $\varepsilon_0 = \varepsilon_2 \simeq \varepsilon_3$, $\varepsilon_e = \varepsilon_1$. Это косвенно указывает на наличие столбчатой структуры пленок, ориентированной в направлении $\mathbf{e_1}$. Дополнительную уверенность в этом придает удовлетворительное согласие соотношения между углами α и φ с формулой 2tg $\alpha = tg \varphi$, характерной для столбчатых неоднородных пленок [⁵].

В соответствии с теорией роста столбчатой неоднородной пленки с возрастанием угла осаждения ф материала распыляемой мишени на подложку должно наблюдаться убывание скорости роста v=d/t, величины анизотропии $\Delta n = n_e - n_0$ ($n_e^2 = \varepsilon_e$, $n_0^2 = \varepsilon_0$) и показателя преломления n_0 [^{6, 7}]. В наших исследованиях убывание v, Δn и n_0 с возрастанием φ прослеживается достаточно отчетливо (рис. 2). Однако, как известно [⁶], со столбчатой структурой связывают возникновение растягивающих напряжений в плепке, приводящих к отрицательной величине анизотропии Δn . Мы же получили пленки как с отрицательной, так и с положительной анизотропией. Последние были получены при относительно малых величинах напряжения смещения $U_{\rm B^{4}}$ на распыляемой мишени (рис. 3).

Положительную анизотропию связывают обычно с сжимающими напряжениями в пленках [6]. Они возникают, по-видимому, при замуровании частиц рабочего газа в пленку в процессе ее роста. Итогом «конкуренции» напряжений растяжения п сжатия является результирующее напряжение, обусловливающее наблюдаемую величину анизотропии. Из графика зависимости Δn ($U_{\rm B4}$) на рис. З видно, что пленки, выращенные при $U_{\rm B4} < U_0$, обладают положитель-

Рис. 2. Скорость роста v, $\hat{A}/$ мин (1), показатель преломления n_0 (2) и величина анизотропии Δn (3) в зависимости от угла напыления φ (мишень и подложка из стекла KB).

Рис. 3. Зависимость показателя преломления n₀ (1-4) и анизотропии ∆n (5-8) волноведущих пленок, полученных при углах напыления 0, 20, 30, 40° соответственно, от напряжения смещения на мишени (мишень и подложка из стекла KB).

ной оптической анизотропией, что указывает на преобладание в них напряжений сжатия. Соответственно в пленках, выращенных при $U_{\rm B^{4}} > U_0$, преобладают напряжения растяжения. При полной компенсации напряжений растяжения и сжатия (случай $U_{\rm B^{4}} = U_0$) оптическая анизотропия не проявляется.

Наличие анизотропии напболее просто регистрируется по характеру поляризаций мод, возбуждающихся в *z*-направлении (рис. 1). Если наблюдаются моды, поляризованные коллинеарно и ортогонально оси *оу*, то анизотропия отсутствует. Если же поляризация выведенного из волновода излучения моды отличается от указанных выше, то волноводная структура анизотропна. В этом случае каждая мода может быть охарактеризована вектором $\mathbf{e}_m = (\cos \phi_m, \sin \phi_m, 0)$ усредненной поляризации. Если азимут ϕ_m усредненной поляризации. Если азимут ϕ_m усредненной поляризации парциальной составляющей, переносящей максимальную долю η_m полной мощности моды, то нетрудно показать, что ψ_m и η_m удовлетворяют формулам

$$tg(2\psi_m) = \frac{\xi_2}{\xi_1}, \quad \eta_m = \frac{1}{2} \left(1 + \sqrt{\xi_1^2 + \xi_2^2} \right), \tag{25}$$

 $\xi_1 = \frac{\int\limits_{-\infty}^{\infty} (E_x H_y + E_y H_x) dx}{\int\limits_{-\infty}^{\infty} (E_x H_y - E_y H_x) dx}, \quad \xi_2 = \frac{\int\limits_{-\infty}^{\infty} (E_y H_y - E_x H_x) dx}{\int\limits_{-\infty}^{\infty} (E_x H_y - E_y H_x) dx}.$

На рис. 4 представлены рассчитанные по формулам (25) дисперсионные кривые ψ_m (d/λ), показывающие зависимость поляризации гибридных мод от приведенной толщины d/λ волноведущей иленки. Соответствующие расчеты

величины у, показали, что их отличие от единицы не превышает 1 %, а следовательно, гибридные моды имеют квазиоднородную линейную поляризацию с азимутом ψ_m . В этой связи зависимость поляризации гибридных мод от толщины волновода необходимо учитывать при разработке поляризационных устройств на основе анизотропных волно-BOROB.

Из проведенного исследования следует, что метод наклонного осаждения позволяет изготавливать анизотропные тонкопленочные волноводы из аморфных материалов. При этом получение нужной ориентации оптиче-

Рис. 4. Расчетные зависимости волноводного показателя преломления n_m и азимута поляризации ψ_m гибридных мод от приведенной толщины d/λ волновода.

ской оси e_1 и величины анизотропии Δn осуществляется посредством изменения технологических параметров процесса напыления пленок. Поэтому метод наклонного осаждения может применяться для изготовления анизотропных волноводов с нужными электродинамическими характеристиками, такими как распределение полей волноводных мод, их фазовые скорости и поляризации.

Список литературы

- Macleod H. A. // J. Vac. Sci. Technol. 1986. Vol. A4 (3). P. 418-422.
 Keiichi Nashimoto J. // J. Appl. Phys. 1988. Vol. 27. N 6. P. 892-898.
 Федоров Ф. И. Теория гиротронии. Минск: Наука и техника, 1976. 456 с.
 Гонкаренко А. М., Редько В. П. Введение в интегральную оптику. Минск: Наука и тех-ника, 1975. 152 с.
 Натка Мисса Н. А. Оптис С. // This Solid Biller, 4070. Vol. 57. N.0. D. 155. 456
- [5] Harris M., Macleod H. A., Ogura S. // Thin Solid Films. 1979. Vol. 57. N 6. P. 173-178.
- [6] Ивановский Г. Ф., Петров В. И. Ионно-плазменная обработка материалов. М.: Радно и связь, 1986. 230 с.
- [7] Технология тонких пленок / Под ред. Л. Майссела. М.: Сов. радио, 1977. Т. 2. 662 с.

Институт физики AH BCCP Могилевское отделение

> 7 Θ

Поступило в Редакцию 2 декабря 1988 г.

