Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет»

УТВЕРЖДАЮ

Первый проректор Велорусско-Российского университета

оверения Ю.В. Машин

«<u>/7» 06</u> 2022 г.

Регистрационный № УД-090304/Б.1, В. IS/p.

Когнитивные технологии в искусственном интеллекте

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Направление подготовки: 09.03.04 «Программная инженерия»

Направленность: Разработка программно-информационных систем

Квалификация (степень): бакалавр

	Форма обучения
(4)**	Очная
Курс	4
Семестр	7
Лекции, часы	30
Лабораторные занятия, часы	30
Экзамен, семестр	7
Контактная работа по учебным занятиям, часы	60
Самостоятельная работа, часы	84
Всего часов / зачетных единиц	144/4

Кафедра – разработчик программы: Программное обеспечение информационных технологий

Составители: канд. техн. наук, доц. Кутузов Виктор Владимирович канд. техн. наук, Мисник Антон Евгеньевич

Рабочая программа составлена в соответствии с федеральным государственным образовательными стандартами высшего образования по направлениям подготовки 09.03.04 «Программная инженерия» (уровень бакалавриата), утвержденные приказом № 920 от 19.09.2017 г. и учебным планом рег. №090304-5 утвержденными 25.03.2022 г.

Рассмотрена и рекомендована к утверждению кафедрой «Программное обеспечение информационных технологий»

«08» апреля 2022 г., протокол № 10.

Зав. кафедрой «Программное обеспечение информационных технологий»

В. В. Кутузов

Одобрена и рекомендована к утверждению Научно-методическим советом Белорусско-Российского университета

«15» июня 2022 г., протокол № 7.

Зам. председателя Научно-методического совета

С.А. Сухоцкий

Рецензент:

Кутынко Руслан Иванович – руководитель отдела разработки ООО "Техартгруп"

Рабочая программа согласована:

Ведущий библиотекарь

Uly O.C. Uly Canoba

Начальник учебно-методического отдела

В.А. Кемова

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1. Цель учебной дисциплины

Цель дисциплины является ознакомление с базовыми принципами работы искусственного интеллекта и выработке навыков моделирования когнитивных систем.

После прохождения курса студенты будут ориентироваться в подходах к созданию систем искусственного интеллекта: основанных на знании (knowledge-based), семантических сетях; ориентироваться в алгоритмических основах интеллектуальных систем, а также проектировании сложных информационных систем с использованием искусственного интеллекта.

1.2. Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен:

-знать

проблемы и тенденции развития концепции управления знаниями в современном информационном обществе;

методы моделирования и проектирования структуры данных и знаний, прикладных и информационных процессов;

принципы построения систем управления знаниями в организации;

состояние законодательной базы в сфере управления информацией и знаниями в Беларуси, России и мире;

роль и задачи управления знаниями на предприятии;

методы, методологии и алгоритмы управления знаниями;

техническое и программное обеспечение для решения задач управления знаниями в организации.

- уметь

проводить обследование организации с целью выявления ее информационных потребностей;

проводить анализ предметной области, выявлять информационные потребности и разрабатывать требования к информационным системам (ИС);

проводить сравнительный анализ и выбор ИКТ для решения прикладных задач и создания ИС;

обосновывать организационно-технические мероприятия по управлению знаниями в организации;

формулировать и решать задачи проектирования информационных систем в сфере управления знаниями с использованием различных методов и решений;

разрабатывать концептуальную модель прикладной области, выбирать инструментальные средства и технологии проектирования ИС;

проводить формализацию и реализацию решения прикладных задач;

выбирать необходимые для организации информационные ресурсы и источники знаний в электронной среде.

- владеть

основными понятиями и определениями предметной области управления знаний; инструментальными средствами в области управления знаниями;

навыками подготовки обзоров научной литературы и электронных информационно-образовательных ресурсов для профессиональной деятельности

1.3 Место учебной дисциплины в системе подготовки студента

Дисциплина относится к блоку 1 «Дисциплины (модули)». Часть Блока 1. Формируемая участниками образовательных отношений).

Перечень учебных дисциплин, изучаемых ранее, усвоение которых необходимо для изучения данной дисциплины:

- Программирование;
- Практики написания программного кода;
- Архитектура ЭВМ;
- Базы данных;
- Операционные системы;
- Объектно-ориентированное программирование;
- Электротехника и электроника;
- Схемотехника;
- Практика применения и разработки программно-аппаратных комплексов.

Перечень учебных дисциплин (циклов дисциплин), которые будут опираться на данную дисциплину:

- Преддипломная практика;
- Выполнение и защита выпускной квалификационной работы

1.4 Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций

Коды формируемых компетенций	Наименование формируемых компетенций для направления подготовки 09.03.04 Программная инженерия	
ПК-5.	Способность готовить презентации, оформлять научно-технические отчеты по результатам выполненной работы, публиковать результаты исследований в виде статей и докладов на научно-технических конференциях	
ПК-6.	Владение навыками моделирования, анализа и использования формальных методов конструирования программного обеспечения	

2 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Вклад дисциплины в формирование результатов обучения выпускника (компетенций) и достижение обобщенных результатов обучения происходит путём освоения содержания обучения и достижения частных результатов обучения, описанных в данном разделе.

2.1 Содержание учебной дисциплины

Номера тем	Наименование тем	Содержание	Коды формируемых компетенций
Тема 1.	Введение в	Основные направления исследований в области	ПК-5
	искусственный	искусственного интеллекта. Нейросетевой подход к	ПК-6
	интеллект	созданию интеллектуальных систем. Инженерия знаний.	
		Понятие экспертной системы	
Тема 2.	Базы знаний	База знаний – основная компонента экспертной системы.	ПК-5
		Отличия знаний от данных, базы знаний от базы данных.	ПК-6
		Архитектура ЭС. Отличия ЭС от традиционных	
		программных систем. Основные типы решаемых задач и	
		области применения ЭС.	

Тема 3.	Инженерия знаний	Технологии инженерии знаний. Классификация методов извлечения знаний. Примеры систем приобретения знаний. Представление нечетких знаний. Вывод в условиях неопределенности.	ПК-5 ПК-6
Тема 4.	Когнитивная наука	Синтетический характер системного мышления. Системные механизмы когнитивных процессов. Математика и приблизительное знание. Симбиоз человека и компьютера в принятии решений. Когнитивные процессы и синергетика. Синергетическое мышление. Когнитивное мышление и когнитивная наука. Когнитивные технологии и искусственный интеллект. Когнитология и принятие решений. Рационализация выбора при принятии решений. Интуиция и принятие решений. Влияние эмоций и мотивации на процесс принятия решений. Методологические инструменты моделирования мыслительной деятельности. Рефлексивное мышление. Проблемы и задачи в активизации мыслительной деятельности. Рефлексия как процесс самопознания субъектом внутренних психических актов и состояний. Метод рефлексивной диагностики. Коммуникации, многослойные коммуникации. Элементы процесса коммуникации. Схема получения новых знаний. Рефлексивные процессы при принятии решений. Принятие решений в условиях неопределенности. Принятие решений в условиях неопределенности.	ПК-5 ПК-6
Тема 5.	Моделирование когнитивных процессов в системах поддержки принятия решений.	Психология оценочных суждений. Проблема моделирования знаний. Модели представления знаний. Обработка знаний и вывод решений в когнитивных системах. Рациональный выбор на основе когнитивных карт и сценарного анализа. Обучение в когнитивных системах. Анализ предметной области и методы приобретения знаний. Индуктивные методы организации обучающих процессов. Обучение на основе прецедентов. Обучение с использованием нейронных сетей. Поиск знаний и обучение с использованием интеллектуальных агентов и многоагентных систем. Онтологии и обучение в когнитивных системах. Гибридные интеллектуальные системы. Прогнозирование поведения человека в условиях адаптации к новой среде.	ПК-5 ПК-6
Тема 6.	Управление эффективностью бизнеса и развитие информационно-интеллектуальных технологий	Управление эффективностью бизнеса корпорации (Виsiness/Согрогате Performance Management - ВРМ/СРМ). Место СРМ в корпоративной информационной системе компании. Интеллектуализация технологии решения задач управления. Новая технология решения задач. Интеллектуальные системы поддержки решений. Бизнес-тренды и перспективы информационных технологий. К информационному обществу и обществу знаний. Управление знаниями в организации. Управление интеллектуальным капиталом организации. Технологии управления знаниями организации. Инженерия знаний (приобретение, моделирование и обработка знаний). Карты знаний. Онтологии. Интеллектуальные средства, поддерживающие принятие решений (Intellectual Decision Support). Ситуационные центры. Системы бизнес-интеллекта (ВІ) как составная часть когнитивных технологий.	ПК-5 ПК-6

Тема 7.	Применение	Применение когнитивных технологий и искусственного	ПК-5
	когнитивных	интеллекта на практике, в отраслях промышленности.	ПК-6
	технологий и	Тенденции их развития.	
	искусственного		
	интеллекта на		
	практике		

2.2 Учебно-методическая карта учебной дисциплины

1 семестр

№ недели	Лекции (наименование тем)	Часы	Лабораторные занятия	Часы	Самостоятельная работа, часы	Форма контроля знаний	Баллы (тах)
1	Модуль 1 Тема 1. Введение в искусственный интеллект	2	Л.р. № 1. Формирование базы знаний	2	2	ЗЛР	4
2	Тема 1. Введение в искусственный интеллект	2	Л.р. № 1. Формирование базы знаний	2	2	ЗЛР	4
3	Тема 2. Базы знаний	2	Л.р. № 1. Формирование базы знаний	2	4	3ЛР	4
4	Тема 2. Базы знаний	2	Л.р. № 1. Формирование базы знаний	2	2	ЗЛР	6
5	Тема 3. Инженерия знаний	2	Л.р. № 1. Формирование базы знаний	2	4	ЗЛР	6
6	Тема 3. Инженерия знаний	2	Л.р. № 2. Разработка нейронной сети	2	2	3ЛР	6
7	Тема 4. Когнитивная наука	2	Л.р. № 2. Разработка нейронной сети	2	4	ПКУ	30
	Модуль 2						
8	Тема 4. Когнитивная наука	2	Л.р. № 2. Разработка нейронной сети	2	4	ЗЛР	6
9	Тема 5. Моделирование когнитивных процессов в системах поддержки принятия решений.	2	Л.р. № 2. Разработка нейронной сети	2	2	ЗЛР	4
10	Тема 5. Моделирование когнитивных процессов в системах поддержки принятия решений.	2	Л.р. № 2. Разработка нейронной сети	2	4	ЗЛР	4
11	Тема 6. Управление эффективностью бизнеса и развитие информационно-интеллектуальных технологий	2	Л.р. № 2. Разработка нейронной сети	2	4	ЗЛР	4
12	Тема 6. Управление эффективностью бизнеса и развитие информационно- интеллектуальных технологий	2	Л.р. № 3. Работа программ с элементами искусственного интеллекта	2	2	ЗЛР	4
13	Тема 7. Применение когнитивных технологий и искусственного интеллекта на практике	2	Л.р. № 3. Работа программ с элементами искусственного интеллекта	2	4	ЗЛР	4
14	Тема 7. Применение когнитивных технологий и искусственного интеллекта на практике	2	Л.р. № 3. Работа программ с элементами искусственного интеллекта	2	4	ЗЛР	4
15	Тема 7. Применение когнитивных технологий и искусственного интеллекта на практике	2	Л.р. № 3. Работа программ с элементами искусственного интеллекта	2	4	ПКУ	30
15					36	ПА* (экзамен)	40
	Итого	30		30	84		100

Принятые обозначения:

Текущий контроль:

ЗЛР – защита лабораторных работ

ПКУ – промежуточный контроль успеваемости.

ПА - Промежуточная аттестация.

Итоговая оценка определяется как сумма текущего контроля и промежуточной аттестации и соответствует баллам:

Экзамен

Оценка	Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Баллы	87-100	65-86	51-64	0-50

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении дисциплины используется модульно-рейтинговая система оценки знаний студентов. Применение форм и методов проведения занятий при изучении различных тем курса представлено в таблице.

$N_{\underline{0}}$	Форма проведения занятия	Вид ауди	Всего часов	
Π/Π		Лекции	Лабораторные занятия	
1	Мультимедиа	Темы 1-7		30
2	С использованием ЭВМ		Лаб. 1–3	30
	ИТОГО	30	30	60

4. ОЦЕНОЧНЫЕ СРЕДСТВА

Используемые оценочные средства по учебной дисциплине представлены в таблице и хранятся на кафедре.

№ п/п	Вид оценочных средств*	Наличие (+ / -)	Количество комплектов
1	Вопросы к экзамену	+	1
2	Экзаменационные билеты	+	1
3	Вопросы для защиты лабораторных работ	+	8

5 МЕТОДИКА И КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ СТУДЕНТОВ

5.1 Уровни сформированности компетенций

№	Уровни	Содержательное описание уровня	Результаты обучения
Π/Π	сформированности		
	компетенций		
Комп	етенция ПК-5. Способ	оность готовить презентации, оформлять	научно-технические отчеты по
резул	ьтатам выполненной ј	работы, публиковать результаты исследог	ваний в виде статей и докладов на
научі	но-технических конфе	ренциях	
ИПК	-5.1. Способен публик	овать результаты исследований в виде ст	атей и докладов на научно-технических
конф	еренциях		
1	Пороговый уровень	Способен оформить презентацию,	Понимает основы принципов
		доклад и статью в полном	подготовки статей и докладов на
		соответствии с минимальными	научно-технических конференциях
		требованиями преподавателя	
2	Продвинутый	Способен оформить презентацию,	Умеет подготавливать результаты
	уровень	доклад и статью с незначительными	исследований в виде статей и докладов
		отклонениями от требований	на научно-технических конференциях.

		преподавателя	
3	Высокий уровень	Способен публиковать результаты	Умеет публиковать результаты
		исследований в виде статей и	исследований в виде статей и докладов
		докладов на научно-технических	на научно-технических конференциях
		конференциях	на продвинутом уровне
Комп	тетенция ПК-6. Владен	ие навыками моделирования, анализа и и	использования формальных методов
конс	груирования программ	иного обеспечения	
ИПК	-6.2. Умеет использова	ать формальные методы конструирования	я программного обеспечения
1	Пороговый уровень	Знать основы осуществления	Понимает основы моделирования,
		моделирования, анализа и	анализа и использования формальных
		использования формальных методов	методов конструирования
		конструирования программного	программного обеспечения. Умеет
		обеспечения	использовать формальные методы
			конструирования программного
			обеспечения.
2	Продвинутый	Уметь осуществлять моделирование,	Умеет выполнять моделирование,
	уровень	анализ и использования формальных	анализ и использования формальных
		методов конструирования	методов конструирования
		программного обеспечения на	программного обеспечения на базовом
		базовом уровне	уровне. Умеет использовать
			формальные методы конструирования
			программного обеспечения.
3	Высокий уровень	Уметь осуществлять моделирование,	Умеет выполнять моделирование,
		анализ и использования формальных	анализ и использования формальных
		методов конструирования	методов конструирования
		программного обеспечения на	программного обеспечения на
		продвинутом уровне	продвинутом уровне. Умеет
			использовать формальные методы
			конструирования программного
			обеспечения.

5.2 Методика оценки знаний, умений и навыков студентов

Результаты обучения	Оценочные средства		
Компетенция ПК-5. Способность готовить презентации, оформля	ять научно-технические отчеты по		
результатам выполненной работы, публиковать результаты иссле	едований в виде статей и докладов на		
научно-технических конференциях			
Понимает основы принципов подготовки статей и докладов на	Вопросы для защиты лабораторных		
научно-технических конференциях	работ.		
	Вопросы к экзамену.		
	Экзаменационные билеты.		
Умеет подготавливать результаты исследований в виде статей	Вопросы для защиты лабораторных		
и докладов на научно-технических конференциях.	работ.		
	Вопросы к экзамену.		
	Экзаменационные билеты.		
Умеет публиковать результаты исследований в виде статей и	Вопросы для защиты лабораторных		
докладов на научно-технических конференциях на	работ.		
продвинутом уровне	Вопросы к экзамену.		
	Экзаменационные билеты.		
Компетенция ПК-6. Владение навыками моделирования, анализа	и использования формальных методов		
конструирования программного обеспечения			
Понимает основы моделирования, анализа и использования	Вопросы для защиты лабораторных		
формальных методов конструирования программного	работ.		
обеспечения. Умеет использовать формальные методы	Вопросы к экзамену.		
конструирования программного обеспечения.			
Умеет выполнять моделирование, анализ и использования	Вопросы для защиты лабораторных		
формальных методов конструирования программного	работ.		
обеспечения на базовом уровне. Умеет использовать	Вопросы к экзамену.		
формальные методы конструирования программного			
обеспечения.			
Умеет выполнять моделирование, анализ и использования	Вопросы для защиты лабораторных		

формальных	методов	1 / 1	1 1	работ. Вопросы к экзамену.
формальные	на продвин методы	утом уровне. Умее конструирования	программного	вопросы к экзамену.
обеспечения.				

5.3 Критерии оценки лабораторных работ.

Студент обязан самостоятельно в полном объеме выполнить лабораторные работы согласно рабочей программе.

Задание на работы выдает ведущий занятия преподаватель.

По результатам выполнения работ студент обязан оформить отчет по лабораторной работе в соответствии с действующими в Университете требованиями по оформлению отчета.

Отсутствие отчета является причиной недопуска к сдаче лабораторной работы.

Защита отчета проводится устно, путем ответов на контрольные вопросы к работе, решения задачи по теме лабораторной работы и демонстрации навыков, полученных при выполнении работы.

При защите лабораторной работы студент имеет право пользоваться собственноручно оформленным отчетом.

При отсутствии ответов на заданные преподавателем вопросы отчет не засчитывается и баллы не выставляются.

Правильные ответы оцениваются согласно оценочным уровням сформированности компетенций по изучаемой теме.

Каждая выполненная и защищенная работа оцениваются на 4 балла, однако некоторые работы оцениваются в диапазоне от 2 до 6 баллов, в зависимости от качества оформления и уровня знаний студента по тематике работы. Если по окончанию модуля лабораторная работа выполнена, но не защищена, то баллы по ней не начисляются, и она попадает в разряд задолженности.

5.5 Критерии оценки экзамена.

Экзаменационный билет включает два теоретических вопроса и одно практическое задание. Практическое задание выполняется с использованием компьютера. Содержание задание соответствует тематике, рассмотренной в процессе выполнения практических и лабораторных работ

Каждый теоретический вопрос оценивается положительной оценкой в диапазоне от 5 до 12 баллов. Практическое задание оценивается положительной оценкой в диапазоне от 5 до 16 баллов

Ответы по следующим критериям.

Теоретические вопросы:

- 12 баллов студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, использует научную терминологию, самостоятельно рассуждает, отличается способностью обосновать выводы и разъяснять их в логической последовательности, дает развернутый ответ на поставленный вопрос и четко отвечает на дополнительные вопросы.
- 10 баллов студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, самостоятельно рассуждает, отличается способностью обосновать выводы и разъяснять их в логической последовательности, но допускает отдельные неточности, в том числе и на дополнительные вопросы.

- **8 баллов** студент хорошо понимает пройденный материал, отвечает правильно, умеет оценивать факты, самостоятельно рассуждает, обосновывает выводы и разъясняет их, но допускает ошибки общего характера.
- 6 баллов студент понимает пройденный материал, но не может теоретически обосновать некоторые выводы, допускает ошибки общего характера.
- **5 баллов** в ответе студента имеются существенные недостатки, материал охвачен «половинчато», в рассуждениях допускаются ошибки
- **Ниже 5 баллов** студент имеет общее представление о вопросе, ответ студента правилен лишь частично, при разъяснении материала допускаются серьезные ошибки, отсутствует техническая терминология, не может исправить ошибки с помощью наводящих вопросов;

Практическое задание:

- **16 баллов** студент правильно и грамотно решает предложенную задачу, четко поясняет методику решения поставленной задачи, получает правильный ответ и дает обоснование результатов, четко отвечает на дополнительные вопросы.
- **14 баллов** студент правильно и грамотно решает предложенную задачу, четко поясняет методику решения поставленной задачи, получает правильный ответ и дает обоснование результатов, отвечает не на все дополнительные вопросы.
- **12 баллов** студент правильно и грамотно решает предложенную задачу, поясняет методику решения поставленной задачи, получает правильный, но не полный ответ и дает обоснование результатов, отвечает не на все дополнительные вопросы.
- 10 баллов студент правильно и грамотно решает предложенную задачу, поясняет методику решения поставленной задачи, получает правильный, но не полный ответ и не дает полного обоснование результатов, отвечает не на все дополнительные вопросы.
- **8 баллов** студент с ошибками решает предложенную задачу, поясняет методику решения поставленной задачи, получает не полный ответ и не дает полного обоснование результатов, отвечает не на все дополнительные вопросы.
- **5 балла** студент с ошибками решает предложенную задачу, не поясняет методику решения поставленной задачи, получает не полный ответ и не дает полного обоснование результатов, отвечает не на все дополнительные вопросы
- Ниже 5 баллов студент не решает предложенную задачу.

6 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

Самостоятельная работа студентов (СРС) направлена на закрепление и углубление освоения учебного материала, развитие практических умений. СРС включает следующие виды самостоятельной работы студентов:

- самостоятельное изучение материала по учебникам и другим источникам;
- проработка тем (вопросов), вынесенных на самостоятельное изучение;
- конспектирование учебной литературы;
- подготовка сообщений к выступлению на семинарских занятиях, в том числе и подготовка рефератов;
 - подготовка рефератов, докладов;
 - подготовка научных публикаций (тезисов докладов, статей);
 - участие в научных и практических конференциях;
 - подготовка к аудиторным занятиям;

- работа с материалами курса, вынесенными на самостоятельное обучение;
- решение задач и упражнений по образцу;
- подготовка к сдаче экзамена;
- выполнение тестовых заданий;

Контроль результатов внеаудиторной самостоятельной работы студентов осуществляется в пределах времени, отведенного на обязательные учебные занятия по дисциплине и внеаудиторную самостоятельную работу студентов по дисциплине, проходит в письменной форме.

Критериями оценки результатов внеаудиторной самостоятельной работы студента являются:

- уровень освоения студентом учебного материала;
- умение студента использовать теоретические знания при выполнении практических, творческих заданий;
- обоснованность и четкость изложения ответа;
- оформление письменных работ в соответствии с предъявляемыми в университете требованиями;
- сформированные компетенции в соответствии с целями и задачами изучения дисциплины.

Перечень контрольных вопросов и заданий для самостоятельной работы студентов хранится на кафедре.

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1 Основная литература:

No	Автор, название, место издания, издательство, год	Гриф	Количество
п/п	издания учебной литературы, вид и характеристика		экземпляров
	иных информационных ресурсов		
1.	Сосинская, С. С. Представление знаний в	Доп. УМО АМ в качестве	10
	информационной системе. Методы	учеб. пособия для студ.	
	искусственного интеллекта и представления	вузов	
	знаний: учеб. пособие / С. С. Сосинская. –		
	Старый Оскол : THT, 2019. – 216c.		

7.2 Дополнительная литература:

No	Автор, название, место издания, издательство, год издания учебной		Количество
Π/Π	литературы, вид и характеристика иных информационных ресурсов		экземпляров
1.	Сычев, В. А. Общая когнитивная теория: монография / В.А. Сычев.		https://znanium.com/ca
	— Москва : ИНФРА-M, 2021. — 283 с.	ı	talog/product/1819022
2.	Исаев, С.В. Интеллектуальные системы: учеб. пособие / С.В. Исаев,		https://znanium.com/ca
	О.С. Исаева Красноярск : Сиб. федер. ун-т, 2017 120 с.	_	talog/product/1032129
3.	Маркус, Г. Искусственный интеллект: Перезагрузка. Как создать		
	машинный разум, которому действительно можно доверять:		https://znanium.com/ca
	практическое руководство / Г. Маркус, Э. Дэвис Москва:	_	talog/product/1905852
	Альпина ПРО, 2021 300 с.		
4.	Берджесс, Э. Искусственный интеллект - для вашего бизнеса:		https://znanium.com/ca
	практическое руководство / Э. Берджесс Москва:	_	talog/product/1842395
	Интеллектуальная Литература, 2021 232 с.		talog/product/1842393
5.	Цзэн, М. Как Alibaba использует искусственный интеллект в		
	бизнесе: Сетевое взаимодействие и анализ данных : практическое		https://znanium.com/ca
	руководство / М. Цзэн; пер. с англ. К. Батыгина Москва:	_	talog/product/1905832
	Альпина Паблишер, 2022 360 с.		

6.	Пятаева, А. В. Интеллектуальные системы и технологии : учеб. пособие / А. В. Пятаева, К. В. Раевич Красноярск : Сиб. федер. унт, 2018 144 с.	_	https://znanium.com/ca talog/product/1032131
----	--	---	---

7.3 Перечень ресурсов сети Интернет по изучаемой дисциплине

<u>http://moodle.bru.by</u> – Образовательный портал Белорусско-Российского университета;

<u>http://e.biblio.bru.by/</u>— Электронная библиотека Белорусско-Российского университета;

https://znanium.com/ – Электронно-библиотечная система Znanium;

<u>https://stepik.org/catalog</u> – Российская образовательная платформа и конструктор бесплатных открытых онлайн-курсов и уроков;

- 1. http://www.radix.net/crbnblu / The Systemic University of the Net (SUN). Сайт, содержащий учебные материалы по системному мышлению и ссылки на другие сетевые источники.
- 2. http://pesmc1.vub.ac.be The Principa Cybernetica Project (PCP). Сайт, содержащий огромное количество материалов, посвященных кибернетике и теории систем, синергетике, искусственному интеллекту, развитию системного подхода.
 - 3. www.knowledgebusiness.com
- 4. <u>www.kmmmag.com</u> Knowledge Management Magazine. Журнал освещает всевозможные вопросы информационных технологий и управления знаниями.
- 5. <u>www.melcrum.com</u> Knowledge Management Review. Лучший журнал для практика.
- 6. www.co-i-l.com/coil/knowledge-garden/cop/index.shtml .Сайт Сомминіту Intelligence Labs. Предлагает большой набор ресурсов для сообществ практики в области интеллектуальных технологий.
 - 7. www.kmci.org Сайт Knowledge Management Consortium International.
- 8. <u>www.vistacompass.com/ikm_public/index.htm</u> IBM Institute For Knowledge Management.
 - 9. www.interclass.com International Corporate Learning Organization.
- 10. http://www/cfin/ru Бандурин А.В., Чуб В.А. Стратегический менеджмент организации.
 - 11. http://www.iworld.ru -Мир Интернет.
- 12. http://www.olap.ru/basic/olap_and_ida.asp Л.В. Щавелёв. Оперативная аналитическая обработка данных: концепции и технологии.
 - 13. http://www.olap.ru/home/home.asp OLAP.ru.
- 14. http://knowledgemanagement.report.ru/_5FolderID_220_.html Портал REPORT.ru.
- 15. http://www.basegroup.ru/ статьи по вопросам анализа данных и применяемым при этом алгоритмам, примеры эффективного использования методов анализа данных в бизнесе, доступные для скачивания библиотеки компонентов для анализа данных.
- 16. http://forum.basegroup.ru/ форум, посвященный проблемам прогнозирования и анализа данных при помощи современных технологий.
- 17. http://www.kdnuggets.com/ Data Mining, Knowledge Discovery, Genomic Mining и Web Mining.

7.4 Перечень наглядных и других пособий, методических рекомендаций по проведению конкретных видов учебных занятий, а также методических материалов к используемым в образовательном процессе техническим средствам

7.4.1 Методические рекомендации

Когнитивные технологии в искусственном интеллекте. Методические рекомендации к лабораторным работам для студентов направлений подготовки 09.03.04 «Программная инженерия». – Могилев: Белорусско-Российский университет (электронный вариант)

7.4.2 Информационные технологии

Мультимедийные презентации по лекционному курсу.

- Тема 1. Введение в искусственный интеллект
- Тема 2. Базы знаний
- Тема 3. Инженерия знаний
- Тема 4. Когнитивная наука
- Тема 5. Моделирование когнитивных процессов в системах поддержки принятия решений.
- Тема 6. Управление эффективностью бизнеса и развитие информационно-интеллектуальных технологий
- Тема 7. Применение когнитивных технологий и искусственного интеллекта на практике

7.4.3 Перечень программного обеспечения, используемого в учебном процессе (по видам занятий)

Microsoft Visual Studio Community (бесплатная лицензия);

PyCharm Community (бесплатная лицензия).

Язык программирования Python версия 3.10 и выше с библиотеками Keras и TensorFlow (бесплатная лицензия).

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Занятия проводятся в компьютерной лаборатории 518/2 университета, рег. № паспорта лаборатории № ПУЛ - 4 518/2-21.