Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет»

УТВЕРЖДАЮ

Первый проректор Белерусско-Российского

университета

И В.В. Машин

17 » 06 2022s

Регистрационный № УД-12030 / 16.1. В S/p

Методы анализа и обработки сигналов

(название учебной дисциплины)

РАБОЧАЯ ПРОГРАММА

Направление подготовки 12.03.01 ПРИБОРОСТРОЕНИЕ Направленность (профиль) Информационные системы и технологии неразрушающего контроля и диагностики

Квалификация (степень) бакалавр

	Форма обучения
	Очная
Курс	3
Семестр	6
Лекции, часы	34
Практические занятия, часы	34
Лабораторные занятия, часы	16
Курсовая работа, семестр	6
Экзамен, семестр	6
Контактная работа по учебным занятиям, часы	84
Самостоятельная работа, часы	96
Всего часов / зачетных единиц	180/5

Кафедра-разработчик программы: «Физические методы контроля»

Составители: Е. Н. Прокопенко, ст. преподаватель

Могилев, 2022 г.

Рабочая программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования - бакалавриат по направлению подготовки 12.03.01 Приборостроение № 945 от 19.09.2017 г., учебным планом рег. № 120301-8 от 30 08, 2021 г.

Рассмотрена и рекомендована к утверждению кафедрой «<u>Физические методы контроля</u>» (название кафедры)

«25» марта 2022 г., протокол № 6.

Зав. кафедрой

С.С. Сергеев

Оаборена и рекомендована к утверждению Научно-методическим советом

Белорусско-Российского университета

«15» июня 2022 г., протокол № 7.

Зам. председателя

Научно-методического совета

С.А. Сухоцкий

Рецензент:

Молочков В. А., к.т.н., доцент, генеральный директор ЗАО «ТПМ»

Рабочая программа согласована:

Ведущий библиотекарь

Начальник учебно-методического отдела

ally O.C. MeyemoBa

В.А. Кемова

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Цель учебной дисциплины

Целью преподавания данной учебной дисциплины является обучение студентов общим вопросам анализа различного вида сигналов и методов их обработки, представления в форме, удобной для пользователя в современных приборах неразрушающего контроля

1.2. Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен:

знать:

- основные модели детерминированных и случайных сигналов;
- виды преобразования измерительных сигналов;
- устройства передачи информации в системах контроля качества;
- элементы теории обнаружения сигналов но фоне помех и шумов;
- принципы формирования цифрового изображения, отображающего результаты контроля качества объектов;

уметь:

- использовать принципы обмена информацией в системах обработки и передачи данных;
 - определять алгоритм и функциональную схему цифровых фильтров;
 - разрабатывать устройства обработки сигналов для приборов контроля качества;
- использовать компьютерные программы для построения и анализа цифровых изображений объектов в неразрушающем контроле;

владеть:

- методами информационного описания сигналов и систем;
- методами оптимального приема и обработки информации;
- методами преобразования измерительной информации;
- навыками работы с цифровыми изображениями.

1.2 Место дисциплины в системе подготовки студента

Дисциплина относится к Блоку 1 "Дисциплины (модули)" (часть Блока 1, формируемая участниками образовательных отношений).

Перечень учебных дисциплин, изучаемых ранее, усвоение которых необходимо для изучения данной дисциплины:

- математика;
- информатика;
- физика;
- физические основы получения информации.

Перечень учебных дисциплин (циклов дисциплин), которые будут опираться на данную дисциплину:

- приборы и системы акустического контроля;
- приборы и системы радиационного контроля;
- учебно-исследовательская работа студентов.

Кроме того, результаты изучения дисциплины на практических и лабораторных занятиях будут применены при прохождении второй производственно-технологической практики, а также при подготовке выпускной квалификационной работы и дальнейшей профессиональной деятельности

1.4 Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды формируемых компетенций	Наименования формируемых компетенций
ПК-3	способность выполнять математическое моделирование процессов и систем в области приборов и методов контроля качества и диагностики

2 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Вклад дисциплины в формирование результатов обучения выпускника (компетенций) и достижение обобщенных результатов обучения происходит путём освоения содержания обучения и достижения частных результатов обучения, описанных в данном разделе.

2.1 Содержание учебной дисциплины

Номер тем	Наименование тем	Содержание	Коды формируемых компетенций.
1	2	3	4
1	Основы анализа сиг- налов		
1.1	Введение. Классификация сигналов.	Предмет и содержание курса. Общая классификация сигналов: детерминированные и случайные сигналы; аналоговые, дискретные, квантованные и цифровые сигналы. Числовые параметры сигналов. Временной способ анализа сигналов.	ПК-3
1.2	Основы спектрального анализа сигналов	Основная цель анализа сигналов. Разложение сигналов на элементарные составляющие. Системы базисных функций. Представление непрерывного сигнала обобщенным рядом Фурье. Спектр сигнала. Амплитудночастотный и фазо-частотный спектры сигналов. Спектральное представление непериодических сигналов. Прямое и обратное преобразование Фурье.	ПК-3
1.3	Корреляционный анализ сигналов	Автокорреляционная функция сигнала. Связь между энергетическим спектром и автокорреляционной функцией сигнала. Взаимокорреляционная функция двух сигналов.	ПК-3
1.4	Модулированные сигналы	Сигналы с амплитудной модуляцией. Спектр амплитудно-модулированного сигнала. Многотональная амплитудная модуляция. Угловая модуляция. Частотная модуляция. Фазовая модуляция. Спектры сигналов с угловой модуляцией.	ПК-3

1	2	3	4
1.5	Случайные сигналы	Числовые характеристики случайных сигналов Интегральная функция распределения и плотность вероятности. Моменты случайной вели-	ПК-3
		чины: математическое ожидание, дисперсии, функция корреляции. Стационарные случайные процессы. Числовые характеристики стационарного эргодического случайного про-	
		цесса.	
1.6	Дискретные сигналы	Математическая модель дискретного сигнала. Дискретизирующая последовательность. Получение дискретного сигнала. Теорема Котельникова-Найквиста. Частота Найквиста. Спектр дискретного сигнала.	ПК-3
1.7	Неразрушающий контроль и обнаружение сигналов	Источники информации в неразрушающем контроле. Особенности обнаружения сигналов измерительной информации в неразрушающем контроле. Критерий оптимального обнаружения. Обнаружение информационного сигнала на фоне шумов и помех. Достоверность обнаружения. Передача и прием сигналов измерительной информации. Каналы связи.	ПК-3
2	Аналоговые системы обработки информа- ции		
2.1	Классификация си- стем обработки ин- формации	Линейные и нелинейные системы обработки сигналов измерительной информации. Стационарные (параметрические) системы обработки информации.	ПК-3
2.2	Характеристики ли- нейных стационар- ных систем обработки измерительной ин- формации	Импульсная характеристика системы обработки измерительной информации, Переходная характеристика. Комплексный коэффициент передачи Коэффициент передачи по мощности. Фазовая и групповая задержка. Взаимный спектр входного и выходного сигналов. Взаимная корреляция между входом и выходом.	ПК-3
2.3	Построение аналоговых систем обработки измерительной информации	Первичная обработка измерительного сигнала. Детектирование. Инвертирование и преобразование масштаба. Фильтрация сигналов. Обобщенная методика расчета систем обработки измерительной информации в технических средствах неразрушающего контроля. Методика расчета необходимых значений отношения сигнала к помехе. Выбор полосы пропускания электронного тракта прибора неразрушающего контроля. Расчет пороговой чувствительности.	ПК-3
3	Цифровые системы обработки измерительной информации		
3.1	Аналого-цифровое преобразование и цифро-аналоговое преобразование	Преимущества цифровой обработки сигналов. Принцип работы аналого-цифрового преобразователя (АЦП). Квантование по уровню, дискретизация по времени, кодирование аналогового сигнала. Методы аналого-цифрового преобразования. Схемы АЦП. Цифро-аналоговые преобразователи (ЦАП). Характеристики ЦАП.	ПК-3

1	2	3	4
3.2	Построение цифровых систем обработки измерительной информации	Элементы цифровых систем обработки измерительной информации. Способы модуляции сигналов при передаче цифровой информации. Алгоритмы цифровой обработки сигналов. Реализация быстрых алгоритмов цифровой обработки в системах неразрушающего контроля.	ПК-3
3.3	Цифровая фильтра- ция	Принцип цифровой фильтрации. Импульсная характеристика цифрового фильтра. Нерекурсивные цифровые фильтры. Рекурсивные цифровые фильтры. Канонические схемы цифровых фильтров. Частотные характеристики цифровых фильтров.	ПК-3
3.4	Цифровые изображения в неразрушающем контроле	Визуализация результатов ультразвукового, теплового и рентгеновского неразрушающего контроля. Принципы построения изображений в промышленной рентгеновской вычислительной томографии. 3D-визуализация.	ПК-3

2.2 Учебно-методическая карта учебной дисциплины

М <u>е</u> недели	Лекции (наименование тем)	Часы	Практические (семинарские) занятия	Часы	Лабораторные занятия	Часы	Самостоятельная работа, часы	Форма контроля знаний	Баллы (тах)
Мод	уль 1		Пр. № 1 Электри-						
1	Тема 1.1 Введение. Классифи- кация сигналов	2	ческие сигналы. Классификация сигналов. Пара- метры электриче- ских сигналов.	2			1		
2	Тема 1.2 Основы спектрального анализа сигналов		ление сигналов во временной области		Л.р. № 1 Спектральный анализ периодических сигналов.	2	2		
3	Тема 1.2 Основы спектрального анализа сигналов	2	Пр. № 2 Представление сигналов во временной области	2			1		
4	Тема 1.3 Корреляционный анализ сигналов	2	Пр. № 3 Спектральный анализ сигналов. Ряды Фурье. Преобразование Фурье	2	Л.р. № 1 Спектральный анализ периодических сигналов.	2	2	3ЛР КР	6 9
5	Тема 1.4 Модулированные сиг- налы	2	Пр. № 3 Спектральный анализ сигналов. Ряды Фурье. Преобразование Фурье	2			1		
6	Тема 1.5 Случайные сигналы	2		2	Л.р. № 2 Спектральный анализ непериодических сигналов.		2		
7	Тема 1.6 Дискретные сигналы	2	Пр. № 4 Однотональная и многотональная амплитудная модуляция сигналов	2			1		
8	троль и обнаружение сигналов	2	Пр. № 4 Однотональная и многотональная ам- плитудная модуля- ция сигналов	2	Л.р. № 2 Спектральный анализ непериодических сигналов.		2	ЗЛР КР ПКУ	6 9 30
Мод	уль 2								
9	Тема 2.1 Классификация систем обработки информации	2	Пр. № 5 Угловая модуля- ция сигналов				1		
10	Тема 2.2 Характеристики линейных стационарных систем обработки измерительной информации	2	Пр. № 6 Дискрети- зация сигналов. Теорема Котель- никова		Л.р.№ 3 Компьютерное моделирование амплитудной и угловой модуляции	2	2		

11	Тема 2.3 Построение Аналоговых систем обработки измерительной информации	2	Пр. № 7 Дискретное преобразование Фурье. Быстрое преобразование Фурье	2			1		
12	Тема 3.1 Аналого-цифровое и цифро-аналоговое преобразование	2	Пр. № 7 Дискретное преобразование Фурье. Быстрое преобразование Фурье	2	Л.р.№ 3 Компьютерное моделирование амплитудной и угловой модуляции	2	2	ЗЛР КР	6 9
13	Тема 3.2 Построение цифровых систем обработки измерительной информации	2	Пр. № 8 Модуля- ция дискретных сигналов	2			1		
14	Тема 3.3 Цифровая фильтрация	2	Пр. № 8 Модуля- ция дискретных сигналов	2	Л.р. № 4 Проектирование цифровых фильтров	2	1		
15	Тема 3.3 Цифровая фильтрация	2	Пр. № 9 Расчет характеристик цифровых систем обработки информации	2			1		
16	Тема 3.4 Цифровые изображения в неразрушающем контроле	22	Пр. № 9 Расчет характеристик цифровых систем обработки информации	2	Л.р. № 4 Проектирование цифровых фильтров	2	1	3ЛР	6
17	Тема 3.4 Цифровые изображения в неразрушающем контроле		Пр. № 9 Расчет характеристик цифровых систем обработки информации	2			2	КР ПКУ	9 30
1- 17	Выполнение курсовой работы						36		
18- 20							36	ПА (экзамен)	40
	Итого	34		34		16	96		100

Принятые обозначения:

Текущий контроль –

КР – контрольная работа;

ЗЛР – защита лабораторной работы;

ПКУ – промежуточный контроль успеваемости.

ПА - Промежуточная аттестация.

Итоговая оценка определяется как сумма текущего контроля и промежуточной аттестации и соответствует баллам:

Экзамен

Оценка	Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Баллы	87-100	65-86	51-64	0-50

2.3. Требования к курсовой работе

Целью курсового проектирования расчет элементов тракта обработки сигналов.

Работа выполняется в соответствии с заданием, которое включает назначение и возможную область применения разрабатываемой системы обработки информации, ее основ-

ные технические данные, условия эксплуатации, состав графической и расчетной части работы, а также этапы выполнения.

Примерная тематика курсовых проектов (работ) представлена в приложении и хранится на кафедре

Курсовая работа состоит из пояснительной записки (20-30 стр. текста), включающей: анализ исходных данных, расчет элементов тракта обработки сигнала, заключения.

Выполненная и правильно оформленная курсовая работа сдается руководителю на проверку не позднее, чем за три дня до установленного срока защиты и после проверки может быть представлена к защите. Работа должна быть подписана автором и руководителем.

Защита работы производится перед комиссией в составе 2 преподавателей кафедры. На выполнение курсовой работы отведено 36 часов самостоятельной работы.

Разбивка этапов курсовой работы, определение количества минимальных и максимальных баллов за каждый из них производится преподавателем. Примерный перечень этапов выполнения курсовой работы и количества баллов за каждый из них представлен в таблине.

Этап выполнения	Минимум	Максимум
Теоретические исследования проблемы, поста-	9	15
новка задачи проектирования		
Расчетная часть	9	15
Разработка рекомендаций и предложений	9	15
Проектирование, разработка эскизов, черте-	6	10
жей		
Оформление пояснительной записки	3	5
Итого за выполнение курсовой работы	36	60
Защита курсовой работы	15	40

Итоговая оценка курсовой работы представляет собой сумму баллов за выполнение и защиту курсовой работы и выставляется в соответствии с приведенной шкалой:

Оценка	Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Баллы	87-100	65-87	51-64	0-50

3 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении дисциплины используется модульно-рейтинговая система оценки знаний студентов. Применение форм и методов проведения занятий при изучении различных тем курса представлено в таблице.

№	Форма проведения	В	и й**	Всего часов	
п/п	занятия*	Лекции	Практические	Лабораторные	
			занятия	занятия	
1	Традиционные	1.1-3.4			34
2	Мультимедиа				
3	Проблемные / проблем-				
	но-ориентированные				
4	Дискуссии, беседы				
5	Деловые игры				
6	Виртуальные				
7	С использованием ЭВМ			1-4	16

8	Расчетные		1-9		34
	ИТОГО	34	34	16	84

4 ОЦЕНОЧНЫЕ СРЕДСТВА

Используемые оценочные средства по учебной дисциплине представлены в таблице

и хранятся на кафедре.

Nº T/T	Вид оценочных средств*	Наличие	Количество
п/п		(+ / -)	комплектов
1	Вопросы к экзамену	+	1
2	Экзаменационные билеты	+	1
3	Контрольные задания для проведения рейтинг-	+	4
	контроля, промежуточной и итоговой аттестации		
4	Вопросы к контрольным, практическим занятиям,	+	8
	лабораторным работам		
5	Перечень тем курсовых работ	+	1

5 МЕТОДИКА И КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ СТУДЕНТОВ

5.1 Уровни сформированности компетенций

No	Уровни сформированности компетенции	Содержательное описание уровня	Результаты обучения	
п/п	·	_		
1	2	3	4	
		нять математическое моделирование про	оцессов и систем в области	
	оров и методов контроля качества и д			
	и наименование индикатора дості			
	ПК-3.2. Применяет методы анализа и обработки сигналов для получения и отображения достоверной			
инфо	рмации об объекте контроля			
1	Пороговый уровень	Знает и понимает сущность использу-	Оформление отчета по лабо-	
		емых сигналов для получения и отоб-	раторной работе и отчета по	
		ражения информации об объекте кон-	обзору известных методик и	
		троля	технических средств, методов	
			и способов анализа и обра-	
			ботки сигналов.	
			Выполнение обзорной курсо-	
			вой работы	
2	Продвинутый уровень	Умеет выявить и провести обработку	Оформление отчета по	
		сигналов для получения информации	лабораторной работе и	
		об объекте контроля	практическому занятию с	
			использованием ПО	
			Выполнение отдельных	
			разделов курсовой работы	
			с элементами разработок	
3	Высокий уровень	Способен провести оценку и анализ	Оформление отчета по	
	J1	информации об объекте контроля.	обзору и анализу извест-	
			ных методик и техниче-	
			ских средств, методов и	
			способов обработки сиг-	
			налов приборов неразру-	
			шающего контроля	
			Выполнение курсовой ра-	
			боты с элементами разра-	
			ботки и расчета характе-	
			ристик отдельных узлов	

	прибора для неразрушаю-
	щего контроля.

5.2 Методика оценки знаний, умений и навыков студентов

Результаты обучения	Оценочные средства		
1	2		
Компетенция ПК-3 – способность выполнять математическое моделирование процессов и систем в обла			
сти приборов и методов контроля качества и диагнос	тики		
Оформление отчета по лабораторной работе и отчета по	Вопросы к контрольным, лабораторным, практиче-		
обзору известных методик и технических средств, мето-	ским занятиям и к экзамену.		
дов и способов анализа и обработки сигналов.	Контрольные работы.		
Выполнение обзорной курсовой работы	Защита курсовой работы		
Оформление отчета по лабораторной работе и	Вопросы к контрольным, лабораторным, практиче-		
практическому занятию с использованием ПО	ским занятиям и к экзамену.		
Выполнение отдельных разделов курсовой работы	Контрольные работы.		
с элементами разработок	Защита курсовой работы		
Оформление отчета по обзору и анализу известных	Вопросы к контрольным, лабораторным, практиче-		
методик и технических средств, методов и спосо-	ским занятиям и к экзамену.		
бов обработки сигналов приборов неразрушающего	Контрольные работы.		
контроля	Защита курсовой работы		
Выполнение курсовой работы с элементами разра-			
ботки и расчета характеристик отдельных узлов			
прибора для неразрушающего контроля.			

5.3 Критерии оценки контрольных работ.

Контрольные работы выполняются по всем дидактическим единицам. Каждая работа включает три теоретических вопроса и оценивается положительной оценкой в диапазоне от 6 до 9 баллов. Каждый теоретический вопрос оценивается до 3 баллов.

5.4 Критерии оценки лабораторных работ.

Каждая выполненная и защищенная лабораторная работа оцениваются в диапазоне от 4 до 6 баллов. При этом 3 балла начисляется за выполнение работы и 1 балл за оформление отчета и защиту работы в зависимости от качества оформления и уровня знаний студента по тематике работы. Если по окончанию модуля лабораторная работа выполнена, но не защищена, то баллы по ней не начисляются и она попадает в разряд задолженности.

5.6 Критерии оценки экзамена.

Билет включает 4 теоретических вопроса из каждой дидактической единицы. Каждый вопрос оценивается положительной оценкой в диапазоне от 4 до 10 баллов. Ответы на вопросы оцениваются по следующим критериям.

- ◆ 10 баллов студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, использует научную и техническую терминологию, самостоятельно рассуждает, отличается способностью обосновать выводы и разъяснять их в логической последовательности, дает развернутый ответ на поставленный вопрос и четко отвечает на дополнительные вопросы;
- ◆ 9 баллов студент глубоко понимает пройденный материал, отвечает четко и всесторонне, умеет оценивать факты, самостоятельно рассуждает, отличается способностью обосновать выводы и разъяснять их в логической последовательности, но допускает отдельные неточности, в том числе и на дополнительные вопросы;
- ◆ **8 баллов** студент хорошо понимает пройденный материал, отвечает правильно, умеет оценивать факты, самостоятельно рассуждает, обосновывает выводы и разъясняет их, но допускает ошибки общего характера;

- ◆ 7 баллов студент понимает пройденный материал, но не может теоретически обосновать некоторые выводы, допускает ошибки общего характера, не может ответить на некоторые дополнительные вопросы;
- ◆ **6 балла** студент отвечает в основном правильно на поставленный вопрос, но чувствуется механическое заучивание материала, отсутствует логическая последовательность при изложении ответа, не может ответить на некоторые дополнительные вопросы;
- ◆ 5 балла в ответе студента имеются недостатки, в рассуждениях допускаются ошибки, не может ответить на большую часть
- дополнительных вопросов, но в целом формулирует ответ на вопрос;
- ◆ **4 балла** в ответе студента имеются существенные недостатки, материал охвачен «половинчато», не может ответить на дополнительные вопросы;

Ниже 4 баллов — студент имеет общее представление о вопросе, ответ студента правилен лишь частично, при разъяснении материала допускаются серьезные ошибки, отсутствует техническая терминология, не может исправить ошибки с помощью наводящих вопросов.

6 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕ-НИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО УЧЕБНОЙ ДИСЦИ-ПЛИНЕ

Самостоятельная работа студентов (СРС) направлена на закрепление и углубление освоения учебного материала, развитие практических умений. СРС включает следующие виды самостоятельной работы студентов:

- конспектирования лекций преподавателя;
- посещения консультаций преподавателя;
- самостоятельного изучения материала по учебникам и другим источникам;
- тестирования по предмету и выполнения контрольных работ;
- закрепления изученного материала на групповых занятиях;
- выполнения курсовой работы;
- подготовки к слаче экзамена

Подготовка к тестированию и написанию контрольной работы по соответствующему модулю дисциплины подразумевает изучение лекционного материала и выполнение практических работ, относящихся к соответствующему модулю.

Контроль результатов внеаудиторной самостоятельной работы студентов осуществляется в пределах времени, отведенного на обязательные учебные занятия по дисциплине и внеаудиторную самостоятельную работу студентов по дисциплине, проходит в письменной форме.

Критериями оценки результатов внеаудиторной самостоятельной работы студента являются:

- уровень освоения учебного материала;
- полнота общеучебных представлений, знаний и умений по изучаемой теме;
- обоснованность и четкость изложения ответа.

Перечень контрольных вопросов и заданий для самостоятельной работы студентов хранится на кафедре.

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1 Основная литература:

№ п/п	Библиографическое описа- ние	Гриф	Количество экземпляров
1	Преобразование измерительных сигналов: учебник / С.В. Нефёдов, А.П. Тарасенко, В.М. Чернова. — Москва: КУРС: ИНФРА-М, 2018 — 224 с.	Рекомендовано в качестве учебника для студентов, обучающихся по направлению подготовки 12.03.01 «Приборостроение»	ЭБС znanium.com
2	Щепетов, А. Г. Преобразование измерительных сигналов: учебник и практикум для академ. бакалавриата / А. Г. Щепетов, Ю. Н. Дьяченко; под ред. А. Г. Щепетова. – М.: Юрайт, 2018. – 270с. – (Бакалавр. Академический курс).	Рекомендовано Учебнометодическим отделом высшего образования в качестве учебника для студентов высших учебных заведений, обучающихся по инженерно-техническим направлениям и специальностям	5

7.2 Дополнительная литература:

№ п/п	Библиографическое описание	Гриф	Количество экзем- пляров
1	Баскаков , С.И. Радиотехнические цели и сигналы / С. И.Баскаков - 4-е изд Москва: Высшая школа, 2002 462 с.	Допущено МО РФ в качестве учебного пособия для студентов ВУЗов	3
2	Солонина, А. И. Основы цифровой обработки сигналов: Курс лекций: Учебное пособие / А. И. Солонина, Д. А. Улахович, С. М. Арбузов 2-е изд СПб.: БХВ-Петербург, 2005 768с.	Рекомендовано МО РФ в ка- честве учебного пособия	1
3	Гадзиковский, В. И. Цифровая обработка сигналов: Практическое пособие Учебное пособие / В.И. Гадзиковский - М.:СОЛОН-Пр., 2020 766 с.	Рекомендовано Региональным отделением УрФО учебнометодического объединения вузов Российской Федерации по образованию в области радиотехники, электроники, биомедицинской техники и автоматизации в качестве учебного пособия для студентов высших учебных заведений	ЭБС znanium.com

7.3 Перечень ресурсов сети Интернет по изучаемой дисциплине

www.dic.academic.ru, www.BiblioFond.ru, www.window.edu.ru.

7.4 Перечень наглядных и других пособий, методических рекомендаций по проведению учебных занятий, а также методических материалов к используемым в образовательном процессе техническим средствам

7.4.1 Методические рекомендации

- 7.4.1.1 Прокопенко Е. Н. Методы анализа и обработки сигналов. Методические рекомендации к лабораторным работам для студентов направления подготовки 12.03.01 «Приборостроение» дневной формы обучения. Могилев. (электронная версия)
- 7.4.1.2 1 Прокопенко Е. Н. Методы анализа и обработки сигналов. Методические рекомендации к практическим занятиям для студентов направления подготовки 12.03.01

«Приборостроение» очной формы обучения — Могилев: Белорусско-Российский университет, 2022-48 с., 15 экз.

7.4.1.3 Прокопенко Е. Н. Методы анализа и обработки сигналов. Методические рекомендации к курсовому проектированию для студентов направления подготовки 12.03.01 «Приборостроение» дневной формы обучения. Могилев. (электронная версия)

7.4.2 Перечень программного обеспечения, используемого в учебном процессе (по видам занятий)

При проведении лабораторных, практических занятий курсовом проектировании используются следующие программные продукты:

MathCAD – программный пакет для математического моделирования (лицензионная).

MATLAB – пакет прикладных программ для решения задач технических вычислений (лицензионный).

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИ-ПЛИНЫ

Материально-техническое обеспечение дисциплины содержится в паспорте лаборатории «Математическое моделирование физических процессов» (ауд. 506, корп.2), рег. N ПУЛ-4.508-506/2-21.

МЕТОДЫ АНАЛИЗА И ОБРАБОТКИ СИГНАЛОВ

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

Направление подготовки 12.03.01 Приборостроение

Направленность (профиль) Информационные системы и технологии неразрушающго контроля и диагностики

	Форма обучения	
	Очная	
Курс	3	
Семестр	6	
Лекции, часы	34	
Практические занятия, часы	34	
Лабораторные занятия, часы	16	
Курсовая работа, семестр	6	
Экзамен, семестр	4	
Контактная работа по учебным занятиям, часы	84	
Самостоятельная работа, часы	96	
Всего часов / зачетных единиц	180/5	

1 Цель преподавания дисциплины

Целью преподавания данной учебной дисциплины является обучение студентов общим вопросам анализа различного вида сигналов и методов их обработки, представления в форме, удобной для пользователя в современных приборах неразрушающего контроля

2 Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен:

знать:

- основные модели детерминированных и случайных сигналов;
- виды преобразования измерительных сигналов;
- устройства передачи информации в системах контроля качества;
- элементы теории обнаружения сигналов но фоне помех и шумов;
- принципы формирования цифрового изображения, отображающего результаты контроля качества объектов;

уметь:

- использовать принципы обмена информацией в системах обработки и передачи данных;
 - определять алгоритм и функциональную схему цифровых фильтров;
 - разрабатывать устройства обработки сигналов для приборов контроля качества;
- использовать компьютерные программы для построения и анализа цифровых изображений объектов в неразрушающем контроле;

владеть:

- методами информационного описания сигналов и систем;
- методами оптимального приема и обработки информации;
- методами преобразования измерительной информации;
- навыками работы с цифровыми изображениями.

3 Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды формируемых компетенций	Наименования формируемых компетенций
ПК-3	способность выполнять математическое моделирование процессов и систем в области приборов и методов контроля качества и диагностики

4 Образовательные технологии

При изучении дисциплины используется модульно-рейтинговая система оценки знаний студентов, а также следующие формы и методы проведения занятий: традиционные, с использованием ЭВМ, расчетные.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

по учебной дисциплине «Методы анализа и обработки сигналов» направления подготовки 12.03.01 «Приборостроение»

на 2023-2024 учебный год

NºNº III	Дополнения и изменения	Основание
1	Пункт 7.4 «Перечень наглядных и других пособий, методических рекомендаций по проведению учебных занятий, а также методических материалов к используемым в образовательном процессе техническим средствам» считать в следующей редакции	Издание методических рекомендаций
	7.4.1 Методические рекомендации 7.4.1.1 Прокопенко Е. Н. Методы анализа и обработки сигналов. Методические рекомендации к лабораторным работам для студентов направления подготовки 12.03.04 «Приборостроение» дневной формы обучения — Могилев: Белорусско-Российский университет, 2022 — 34 с., 31 экз. 7.4.1.2 Прокопенко Е. Н. Методы анализа и обработки сигналов. Методические рекомендации к практическим занятиям для студентов направления подготовки 12.03.01 «Приборостроение» очной формы обучения — Могилев: Белорусско-Российский университет, 2022 — 48 с., 15 экз. 7.4.1.3 Прокопенко Е. Н. Методы анализа и обработки сигналов. Методические рекомендации к курсовому проектированию для студентов направления подготовки 12.03.04 «Приборостроение» дневной формы обучения. — Могилев: Белорусско-Российский университет, 2023 — 20 с., 31 экз.	
	7.4.2 Перечень программного обеспечения, используемого в учебном процессе (по видам занятий) При проведении лабораторных, практических занятий курсовом проектировании используются следующие программные продукты: МаthCAD — программный пакет для математического моделирования (лицензионная).	
	МАТLAВ – пакет прикладных программ для решения задач технических вычислений (лицензионный).	

Рабочая программа пересмотрена и одобрена на заседании кафедры «Физические методы контроля» (протокол № 7 от 15.03 2023 г.)

Заведующий кафедрой:

Доцент, к.т.н.

С. С. Сергеев

УТВЕРЖДАЮ

Декан электротехнического факультета

Доцент, к.т.н.

С. В. Болотов

13 mail 2023 г.

согласовано:

Ведущий библиотекарь

Начальник учебно-методического отдела

y O.C. Mycmoba

О. Е. Печковская

13 Mail 2023 r.