DOI: 10.53078/20778481 2023 3 16

УДК 621:787

А. М. ДОВГАЛЕВ, канд. техн. наук, доц. Д. М. СВИРЕПА, канд. техн. наук, доц. М. В. ТАРАДЕЙКО И. А. ТАРАДЕЙКО Н. Ю. МАЛИНОВСКИЙ Белорусско-Российский университет (Могилев, Беларусь)

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА МОДИФИЦИРОВАНИЯ НАРУЖНЫХ ЦИЛИНДРИЧЕСКИХ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ИМПУЛЬСНО-УДАРНЫМ НАКАТЫВАНИЕМ И ВРАЩАЮЩИМСЯ МАГНИТНЫМ ПОЛЕМ

Аннотация

Предложена математическая модель процесса модифицирования наружных цилиндрических поверхностей деталей импульсно-ударным накатыванием и вращающимся магнитным полем. Получены аналитические зависимости, описывающие кинематические характеристики деформирующего шара в момент его движения от намагниченной детали до шара-отражателя.

Ключевые слова:

совмещенная обработка, поверхностное пластическое деформирование, магнитное поле, импульсно-ударное накатывание, математическое моделирование, модифицирование наружных цилиндрических поверхностей.

Для цитирования:

Математическое моделирование процесса модифицирования наружных цилиндрических поверхностей деталей импульсно-ударным накатыванием и вращающимся магнитным полем / А. М. Довгалев, Д. М. Свирепа, М. В. Тарадейко, И. А. Тарадейко, Н. Ю. Малиновский // Вестник Белорусско-Российского университета. – 2023. – № 3 (80). – С. 16–25.

Введение

Получение модифицированного поверхностного слоя деталей машин является актуальной задачей для машиностроения. Известны методы магнитно-динамического раскатывания, а также магнитно-динамического и совмеповерхностей шенного накатывания нежестких деталей. Выполнено матемамоделирование тическое процессов упрочнения, осуществляемое указанными методами [1-4]. Однако данные методы не позволяют произвести обработку наружных цилиндрических поверхностей деталей инструментами обхватывающего типа, обладающими высокими показателями производительности. В связи с этим процесс модифицирования наружных цилиндрических поверхностей деталей импульсно-ударным накатыванием и вращающимся магнитным полем вызывает повышенный научно-практический интерес. В его основе лежит импульсно-ударное воздействие деформирующих шаров на обрабатываемую деталь. Обработка поверхностей указанным способом позволяет интенсифицировать процесс упрочнения, а также обрабатывать детали машин из немагнитопроводных материалов.

Объект исследования

Для импульсно-ударного накатывания поверхности валов во вращающемся магнитном поле разработано устройство, представленное на рис. 1 [5, 6].

[©] Довгалев А. М., Свирепа Д. М., Тарадейко М. В., Тарадейко И. А., Малиновский Н. Ю., 2023

Рис. 1. Конструкция устройства для импульсно-ударного накатывания поверхности вала

Устройство содержит следующие основные элементы: диски 1, 2 с центральным отверстием 3; сообщающиеся внутреннюю 4 и внешнюю 5 кольцевые камеры; деформирующие шары 6; шары-отражатели 7; магнитную систему, состоящую из обойм 8, 9, цилиндрических постоянных магнитов 10, 11, магнитопроводов 12, 13 для намагничивания поверхности вала, зубчатых магнитопроводов 14, 15 для привода деформирующих шаров; центры 16, 17; корпус 18 с центральной выточкой 19.

Внутренняя кольцевая камера 4 выходит в полость отверстия 3 дисков 1, 2. Деформирующие шары 6 установлены во внутренней кольцевой камере 4, а шары-отражатели – во внешней кольцевой камере 5.

Цилиндрические постоянные магниты 10, 11 установлены в радиальных отверстиях 20, 21 обойм 8, 9 с одинаковым расположением полюсов и взаимодействуют с торцами 22, 23 магнитопроводов 12, 13 и 24, 25 зубчатых магнитопроводов 14, 15. Обоймы 8, 9 закреплены на дисках 1, 2 соосно центральному отверстию 3, симметрично плоскости вращения 26 деформирующих шаров 6. Диски 1, 2 установлены в центральной выточке 19 корпуса 18. Центры 16, 17 расположены соосно друг другу и продольной оси центрального отверстия 3 дисков 1, 2.

Диски 1, 2, обоймы 8, 9, центры 16, 17, корпус 18 выполнены из немагнитопроводных материалов.

Устройство работает следующим образом. Центр 16 закрепляют в патроне станка с возможностью передачи крутящего момента, а центр 17 – в подшипниковой опоре, расположенной в пиноли станка. Корпус 18 крепят винтами 27 на суппорте 28 станка. Радиальным перемещением резцедержателя совмещают продольную ось центров 16, 17 с продольной осью отверстия 3 дисков 1, 2. Обрабатываемый вал 29 вводят в отверстие 3 дисков 1, 2 и закрепляют в центрах 16, 17. Ось симметрии кольцевых камер 4, 5, совпадающую с плоскостью вращения 26 деформирующих шаров 6, совмещают с правым (относительно чертежа) торцом вала 30. Линии магнитного поля замыкаются через магнитопроводы 12, 13 и поверхность ферромагнитного вала 29 или, при обработке немагнитных материалов, через деформирующие шары 6.

Валу 29 сообщают вращение, а корпусу 18 устройства – движение подачи. Намагниченный вращаемый участок вала 29, а также магнитопроводы 14, 15 воздействуют на деформирующие шары 6 и разгоняют их в окружном направлении кольцевой камеры 4. Под действием возникающей центро-

бежной силы деформирующие шары расходятся в радиальном направлении до шаров-отражателей 7. Периодически сталкиваясь с шарами-отражателями 7, деформирующие шары 6 меняют траекторию своего движения в направлении к упрочняемой поверхности вала 29, достигают ее и, соударяясь с поверхностью вала, осуществляют динамическое Причем упрочнение. поверхностное пластическое деформирование поверхности осуществляется в металле, находящемся в напряженном состоянии под действием магнитного поля. Фактически имеет место совмещенное упрочнение – импульсно-ударным деформированием и магнитным полем, что повышает производительность упрочняющей обработки и глубину упрочненного слоя. На поверхности вала формируется новый рельеф с низкой шероховатостью и профилем, представляющим собой пересечение лунок от деформирующих шаров, внедряемых в поверхность при динамическом ударе.

Математическое моделирование процесса импульсно-ударного накатывания наружных цилиндрических поверхностей во вращающемся магнитном поле

Процесс импульсно-ударного накатывания наружных поверхностей вращения реализуется механической системой, состоящей из устройства намагничивания поверхностного слоя ферромагнитной детали, вращающейся ферромагнитной детали, деформирующих шаров и шаров-отражателей, установленных в кольцевых камерах инструмента с возможностью взаимодействия (см. рис. 1 и 2).

Для выполнения математического моделирования данной механической системы введем следующие допущения [7]:

 продольная ось инструмента располагается горизонтально;

 – рассматриваем движение одного деформирующего шара, т. к. все дефор-

мирующие шары инструмента находятся в одинаковых условиях;

 исследуем относительное движение деформирующего шара в плоскости, перпендикулярной продольной оси инструмента в подвижной системе координат;

 – деформирующий шар и шаротражатель рассматриваем как материальные точки с массами, помещенными в центр сфер соответствующих радиусов;

 магнитное взаимодействие между деформирующими шарами инструмента отсутствует;

 – сила магнитного притяжения деформирующего шара к намагниченной детали и зубьям магнитопровода направлена по линии, соединяющей их геометрические центры;

 источники магнитного поля инструмента расположены с равномерным угловым шагом;

 на поверхности ферромагнитного вала магнитная система инструмента создает однородное магнитное поле.

Моделирование движения деформирующего шара от намагниченной детали до шара-отражателя

Рассмотрим движение деформирующего шара относительно подвижных осей координат x_1Oy_1 , связанных с центром масс деформирующего шара (система координат xOy совмещена с центром масс детали) (см. рис. 2, *a*).

Запишем основное уравнение динамики относительного движения деформирующего шара:

$$m_{1}\vec{a}_{r} = \vec{G} + \vec{N} + \vec{T} + \vec{\Phi}_{en} + \vec{\Phi}_{e\pi} + \vec{F}_{mp} + \vec{F}_{M\mathcal{A}} + \vec{F}_{M3}, \quad (1)$$

где m_1 – масса деформирующего шара; \vec{a}_r – относительное ускорение центра масс деформирующего шара; \vec{G} – сила тяжести деформирующего шара; $ec{N},ec{T}$ – нормальная и касательная составляющие силы взаимодействия деформирующего шара с поверхностью намагниченной детали (в момент отрыва деформирующего шара от поверхности детали указанные силы равны нулю); $\vec{\Phi}_{en}$ – нормальная составляющая переносной силы инерции (при отрыве от намагниченной поверхности детали $\vec{\Phi}_{_{en}} = 0$); $\vec{\Phi}_{_{e\tau}}$ – касательная составляющая переносной силы инерции (при установившемся режиме угловая скорость вращения намагниченного вала – величина постоянная, следовательно, $\vec{\Phi}_{_{e\tau}} = 0$); \vec{F}_{MZ} , \vec{F}_{M3} – составляющие силы магнитного притяжения деформирующего шара к намагниченной поверхности детали и зубьям магнитопровода соответственно; \vec{F}_{mp} – сила трения скольжения деформирующего шара о поверхность дисков. Так как деформирующие шары установлены с боковыми осевыми зазорами во внутренней кольцевой камере инструмента, то трение скольжения пренебрежительно мало либо вовсе отсутствует ($\overline{F}_{mp} = 0$).

До отрыва деформирующего шара от поверхности намагниченной детали силы \vec{G} , \vec{T} и \vec{N} уравновешивают друг друга.

После отрыва деформирующего шара от поверхности детали силой \vec{G} пренебрегаем, т. к. она значительно меньше остальных, действующих на него сил.

Рассмотрим силы Φ_{en} и $\Phi_{e\tau}$, входящие в уравнение (1):

$$\Phi_{en} = m_1 \omega^2 r_{\scriptscriptstyle H}; \qquad (2)$$

$$\Phi_{e\tau} = m_1 \varepsilon r_{H}, \qquad (3)$$

где ω – угловая скорость вращения намагниченной детали; $r_{\rm H}$ – начальное расстояние между геометрическими центрами детали и деформирующего шара: $r_{\rm H} = r_1 + r_2$, где r_1 , r_2 – радиусы деформирующего шара и упрочняемой детали соответственно.

Сила магнитного притяжения определяется как геометрическая сумма

составляющих магнитных сил, действующих со сторон ферромагнитного вала и зубьев магнитопровода.

Рис. 2. Схема движения деформирующего шара: *a* – в момент отрыва от намагниченной детали; *б* – после отрыва от детали и перемещения к шару-отражателю; 1 – деформирующий шар инструмента; 2 – поперечное сечение намагниченного вращающегося вала

Магнитная сила, действующая на деформирующий шар со стороны детали, определяется по известной зависимости [8]. С высокой достоверностью указанная функция силы аппроксимируется следующим простым выражением:

$$F_{M\mathcal{I}} = A_1 (r - r_1)^{-b_1},$$
 (4)

где A_1 , b_1 – эмпирические коэффициенты, зависящие от свойств магнитного поля, а также материала упрочняемой детали и деформирующего шара; r – расстояние между геометрическими центрами деформирующего шара и ферромагнитной детали. Ввиду вышеуказанного запишем силу магнитного притяжения деформирующего шара к зубьям магнитопровода:

$$F_{M3} = A_2 r_3^{-b_2}, \qquad (5)$$

где A_2 , b_2 – эмпирические коэффициенты, зависящие от свойств магнитного поля, формы зубьев и материала зубчатого магнитопровода; r_3 – расстояние от центра деформирующего шара до зуба магнитопровода.

Определим расстояние от центра деформирующего шара до зуба магнитопровода. Рассмотрим рис. 3.

Рис. 3. Схема для расчета силы магнитного притяжения деформирующего шара к зубчатому магниту: 1 – деформирующий шар; 2 – вращающийся вал; 3 – зубья магнитопровода

Расстояние от центра деформирующего шара до зуба магнитопровода r_{3x} в сечении, проходящем через ось Ox_1 перпендикулярно поперечному сечению,

$$r_{_{3x}}^{2} = l_{_{3}}^{2} + (r - ON)^{2},$$
 (6)

где l_3 — расстояние от оси симметрии зуба в поперечном сечении до плоскости движения шара; ON — радиальный размер внутренней поверхности зубчатого магнитопровода.

Величина окружного смещения шара определяется как

$$r_{30} = r_{3x} \cdot \mathrm{tg}\gamma, \qquad (7)$$

где γ – угол смещения в окружном направлении деформирующего шара относительно оси симметрии зуба.

Угол смещения в окружном направлении шара найдем по теореме синусов:

$$\frac{ON}{\sin\gamma} = \frac{r}{\sin\alpha_{yy}},$$

откуда, в соответствии с рис. 3,

$$\gamma_1 = \arcsin\left(\frac{ON\sin\alpha_{w1}}{r}\right);$$
 (8)

$$\gamma_2 = \arcsin\left(\frac{ON\sin\alpha_{w2}}{r}\right),$$
 (9)

где α_{uu1} , α_{uu2} – углы между линиями, соединяющими геометрический центр детали с геометрическим центром деформирующего шара и с геометрическим центром соответствующего зуба.

Так как сила магнитного притяже-

ния стремительно убывает при удалении от магнита, то целесообразно рассмотреть взаимодействие шара только со смежными зубьями магнитопровода.

Тогда можно ввести условие

$$\alpha_{u1} = \varphi_r - i \frac{2\pi}{z_3}; \qquad (10)$$

$$\alpha_{u2} = \frac{2\pi}{z_3} - \alpha_{u1} = \frac{2\pi}{z_3} (1+i) - \varphi_r, \ (11)$$

где *i* – целая часть числа, определяющая положение шара,

$$i = \left\lfloor \frac{\varphi_r}{2\pi / z} \right\rfloor; \tag{12}$$

фг — угол поворота деформирующего шара относительно неподвижной системы координат *хОу*.

Из рис. 3 следует

$$\varphi_r = \operatorname{arctg}\left(\frac{X}{Y}\right).$$
 (13)

Радиус-вектор, соединяющий геометрический центр деформирующего шара и геометрический центр магнитопроводного зуба, определяется как

$$\overrightarrow{r_{3}}=\overrightarrow{r_{3x}}+\overrightarrow{r_{3o}},$$

а его длина как

$$r_{3} = \sqrt{r_{3x}^{2} + r_{3o}^{2}}.$$
 (14)

Подставляя (6)–(13) в выражение (14), получаем

$$r_{31} = \sqrt{\left(l_{3}^{2} + (r - ON)^{2}\right)\left(1 + tg^{2}\left(\arcsin\left(\frac{ON\sin\left(\operatorname{arctg}\left(\frac{X}{Y}\right) - i \cdot \frac{2\pi}{z_{3}}\right)\right)\right)\right)}{r}\right)}; \quad (15)$$

$$r_{32} = \sqrt{\left(l_{3}^{2} + (r - ON)^{2}\right)\left(1 + tg^{2}\left(\operatorname{arcsin}\left(\frac{ON\sin\left(\frac{2\pi}{z_{3}}(1 + i) - \operatorname{arctg}\left(\frac{Y}{X}\right)\right)}{r}\right)\right)\right)}. \quad (16)$$

Найдем проекции сил магнитного притяжения к зубьям магнитопровода

на оси Ox_1 и Oy_1 :

$$F_{M3(1+2)x} = A_2 r_{31}^{-b_2} \cdot \cos \gamma_1 + A_2 r_{32}^{-b_2} \cdot \cos \gamma_2 = A_2 r_{31}^{-b_2} \left(\cos \gamma_1 + \left(\frac{r_{32}}{r_{31}} \right)^{-b_2} \cdot \cos \gamma_2 \right);$$
(17)

$$F_{M3(1+2)y} = A_2 r_{31}^{-b_2} \cdot \sin \gamma_1 + A_2 r_{32}^{-b_2} \cdot \sin \gamma_2 = A_2 r_{31}^{-b_2} \left(\sin \gamma_1 + \left(\frac{r_{32}}{r_{31}} \right)^{-b_2} \cdot \sin \gamma_2 \right).$$
(18)

Так как $r = x^2 + y^2$, то проекции радиус-вектора на подвижные оси координат *хОу*, связанные с деталью, можно записать как

$$\cos\varphi_r = \frac{x}{\sqrt{x^2 + y^2}}; \qquad (19)$$

$$\sin \varphi_r = \frac{y}{\sqrt{x^2 + y^2}}.$$
 (20)

После преобразований запишем уравнение (1) в проекциях компонентов на оси координат *Оху* в форме Коши:

$$\begin{cases} \ddot{x} = \left(A_{1}(r - r_{1})^{-b_{1}} + A_{2}r_{31}^{-b_{2}} \left(\cos \gamma_{1} + \left(\frac{r_{32}}{r_{31}} \right)^{-b_{2}} \cdot \cos \gamma_{2} \right) \right) \cdot \cos \varphi_{r}; \\ \ddot{y} = \left(A_{1}(r - r_{1})^{-b_{1}} + A_{2}r_{31}^{-b_{2}} \left(\sin \gamma_{1} + \left(\frac{r_{32}}{r_{31}} \right)^{-b_{2}} \cdot \sin \gamma_{2} \right) \right) \cdot \sin \varphi_{r}. \end{cases}$$
(21)

При решении системы (21) методами численного интегрирования следует соблюдать краевые условия координат центра масс и скорости деформирующего шара [7]:

– начальные

$$t = t_0; x = r_1 + r_2; y = 0;$$

 $\dot{x} = 0; \dot{y} = \omega r_{\mu}; \sqrt{x_0^2 + y_0^2} = r_1 + r_2;$

- текущие

$$t = t; \quad x = x; \quad y = y; \quad \dot{x} = \dot{x};$$

 $\dot{y} = \dot{y}; \quad \sqrt{x^2 + y^2} = r;$

- конечные

$$t = t_k; \quad x = x_k; \quad y = y_k; \quad \dot{x} = \dot{x}_k;$$

 $\dot{y} = \dot{y}_k; \quad \sqrt{x_k^2 + y_k^2} = r_k,$

где t_0 , t_k , x_0 , x_k , y_0 , y_k , \dot{x}_0 , \dot{x}_k , \dot{y}_0 , \dot{y}_k – время, координаты центра деформирующего шара и проекции скорости деформирующего шара на оси Ox и Oyв начальный и конечный момент фазы движения деформирующего шара от упрочняемой поверхности детали до взаимодействия с шаром-отражателем соответственно.

При численном интегрировании следует соблюдать условие

$$\sqrt{x_k^2 + y_k^2} \le OC_{\max},$$

где OC_{max} — максимально возможное расстояние между геометрическими центрами детали и деформирующего шара (определяется конструкцией инструмента и угловым положением деформирующего шара).

Заключение

В результате математического моделирования получена система дифференциальных уравнений, описывающих кинематику движения деформирующего шара от намагниченной детали до шараотражателя при модифицировании наружных цилиндрических поверхностей деталей импульсно-ударным накатыванием и вращающимся магнитным полем. Найдены начальные, текущие и конечные условия для численного интегрирования дифференциальных уравнений и определения кинематических характеристик деформирующего шара при различных режимах обработки и конструктивных параметрах устройства для импульсно-ударного накатывания.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Довгалев, А. М. Магнитно-динамическое и совмещенное накатывание поверхностей нежестких деталей / А. М. Довгалев. – Могилев: Белорус.-Рос. ун-т, 2017. – 266 с.

2. Упрочняющий инструмент: пат. ВҮ 15364 / А. М. Довгалев, Д. М. Свирепа, Д. М. Рыжанков, С. А. Сухоцкий. – Опубл. 28.02.2012.

3. Довгалев, А. М. Технология магнитно-динамического раскатывания и ее реализация в машиностроении / А. М. Довгалев, Д. М. Свирепа // Материалы, оборудование и ресурсосберегающие технологии: материалы Междунар. науч.-техн. конф. – Могилев: Белорус.-Рос. ун-т, 2014. – С. 10–15.

4. Довгалев, А. М. Математическое моделирование процесса магнитно-динамического раскатывания / А. М. Довгалев, И. И. Маковецкий, Д. М. Свирепа // Вестн. Брест. гос. техн. ун-та. – 2010. – № 4 (64). – С. 26–30.

5. Инструмент для отделочно-упрочняющей обработки вала: пат. ВУ 18302 / А. М. Довгалев, С. А. Сухоцкий, Д. М. Свирепа, И. А. Тарадейко. – Опубл. 30.08.2013.

6. **Тарадейко, М. В.** Двухрядный инструмент для импульсно-ударного деформирования / М. В. Тарадейко, И. А. Тарадейко // Новые материалы, оборудование и технологии в промышленности: материалы Междунар. науч.-техн. конф. молодых ученых. – Могилев: Белорус.-Рос. ун-т, 2021. – С. 62.

7. Математическое моделирование процесса магнитно-динамического упрочнения наружной поверхности вращения / А. М. Довгалев [и др.] // Вестн. Белорус.-Рос. ун-та. – 2013. – № 4. – С. 25–34.

8. Моделирование процесса совмещенной упрочняющей обработки импульсно-ударным раскатыванием и вращающимся магнитным полем / В. К. Шелег [и др.] // Вестн. Белорус.-Рос. ун-та. – 2014. – № 1. – С. 73–84.

Статья сдана в редакцию 7 июля 2023 года

Контакты:

www.rct.bru.by (Довгалев Александр Михайлович); svdima@tut.by (Свирепа Дмитрий Михайлович); IvanTaradeiko@yandex.ru (Тарадейко Марина Вадимовна); IvanTaradeiko@yandex.ru (Тарадейко Иван Анатольевич); nik.klass.97@mail.ru (Малиновский Никита Юрьевич).

A. M. DOVGALEV, D. M. SVIREPA, M. V. TARADEIKO, I. A. TARADEIKO, N. Y. MALINOVSKY

MATHEMATICAL MODELING OF THE PROCESS OF MODIFYING EXTERNAL CYLINDRICAL SURFACES OF PARTS BY USING IMPULSE-IMPACT ROLLING AND A ROTATING MAGNETIC FIELD

Abstract

A mathematical model for the process of modifying external cylindrical surfaces of parts by using impulse-impact rolling and a rotating magnetic field is proposed. Analytical dependencies have been obtained which describe kinematic characteristics of the deforming ball at the moment of its movement from a magnetized part to the reflecting ball.

Keywords:

combined processing, surface plastic deformation, magnetic field, impulse-impact rolling, mathematical modeling, modification of external cylindrical surfaces.

For citation:

Mathematical modeling of the process of modifying external cylindrical surfaces of parts by using impulse-impact rolling and a rotating magnetic field / A. M. Dovgalev, D. M. Svirepa, M. V. Taradeiko, I. A. Taradeiko, N. Y. Malinovsky // Belarusian-Russian University Bulletin. -2023. $-N_{\odot} 3$ (80). -P. 16–25.