«ХАРАКТЕРИСТИКА РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ГИДРОСФЕРЫ В ЗОНЕ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ ПО ПРОИЗВОДСТВУ ОРУЖЕЙНОГО ПЛУТОНИЯ»

Казачёнок Н.Н., Попова И.Я., Мельников В.С., Полянчикова Г.В., Тихова Ю.П., Россинская Г.В., Коновалов К.Г., Копелов А.И.

Уральский научно-практический центр радиационной медицины, Челябинск, Россия

В течение длительного времени территория, охватывающая северо-восточную часть Челябинской области в радиусе нескольких десятков километров от радиохимического предприятия ПО «Маяк», подвергалась радиоактивному загрязнению. Водные экосистемы загрязнялись вследствие осаждения газоаэрозольных выбросов в первые годы работы реактора и радиохимического завода. Особенно большое количество радионуклидов было выброшено в атмосферу во время радиационных аварий (в 1957 г. Восточно-Уральский радиоактивный след – ВУРС, в 1967 г. Карачаевский радиоактивный след). Супераквальные озерные ландшафты являются геохимически подчиненными, поэтому их состояние отражает не только общий характер радиоактивного загрязнения территории, но и скорость аккумуляции мигрирующих радионуклидов. Важное значение имеет качество воды в местах активного водопользования: на территории населенных пунктов, рекреационных зон, в местах водопоя скота, рыбалки и др.

В систему реки Теча длительное время сбрасывали жидкие радиоактивные отходы. В период 1949-1954 г. в точке сброса жидких радиоактивных отходов в речную систему поступило большое количество растворенных и взвешенных радионуклидов, в частности: 90 Sr+ 90 Y – 47,1 кКи, 137 Cs+ 137m Ba – 49,9 кКи.[1]

В настоящее время сброс радионуклидов в открытую речную систему прекращен, но до сих пор в воде реки активность ⁹⁰Sr в несколько раз превышает уровень вмешательства; растет загрязнение воды ³H. Радионуклиды поступают в реку Исеть и далее, через систему реки Обь в Северный ледовитый океан. В настоящее время исток реки формируется ниже плотины технологического водоема В-11 за счет сброса воды из левобережного обводного канала (ЛБК), правобережного обводного канала (ПБК) и фильтрации под плотиной водоема В-11.[2]

Методы исследования

Исследования прводили в 2008-2012 гг. На озерах пробы воды отбирали в июне в местах активного водопользования: на территории населенных пунктов, в местах водопоя скота, в зонах отдыха населения. На реке Теча пробы воды отбирали в течение года (половодье, летняя и зимняя межень и др.) из обводных каналов и их притоков (река Мишеляк, канал из озера Бердяниш), а также в гидрологических створах «Асанов мост», «Новый мост», «Надыров мост» и у населенных пунктов.

Удельную активность 137 Cs определяли радиохимически сурьмянойодидным методом после концентрирования его на ферроцианиде никеля. Удельную активность 90 Sr в пробах определяли экстракционным методом по дочернему 90 Y с использованием МИОМФК. Измерение β -активности выделенных радионуклидов проводилось на малофоновых радиометрических установках УМФ-1500 и УМФ-2000 с пламенно-фотометрическим контролем выхода носителя стронция. Определение 3 H в воде проводили методом прямого измерения на жидкостном α -, β -радиометре Quantulus 1220 после предварительной дистилляции из щелочной среды с добавлением перманганата калия. Статистическую обработку проводили с помощью программы Microsoft Excel.

Результаты исследования

Вода р. Течи наиболее загрязнена в верхнем течении от Асанова моста (\approx 5,5 км по руслу от плотины водоема В-11) до деревни Муслюмово (\approx 54 км от плотины). В период с 2000 г. по 2012 г. удельная активность 90 Sr в воде на этом участке колебалась от 1,6 Бк/л до 60,0 Бк/л, и, в среднем, по 121 пробе составила 17,1 \pm 2,2 Бк/л. Активность 137 Cs колебалась от 0,06 Бк/л до 11,5 Бк/л, в среднем – 1,0 \pm 0,4 Бк/л, активность 3 H – от 11,2 Бк/л до 451 Бк/л, в среднем 240 \pm 33 Бк/л, активность 239,240 Pu не превышала 0,096 Бк/л, в среднем – 0,019 \pm 0,02 Бк/л. Таким образом, в верхнем течении реки только 90 Sr постоянно и значительно превышает Уровень вмешательства.[3]

В большинстве измерений загрязнение воды радионуклидами снижалось на участке от Асанова моста до Нового моста (\approx 5,5 км и \approx 16 км от плотины), где в Течу впадает р. Зюзелга (\approx 9 км от

плотины), содержание радионуклидов в воде которой близко к фоновому (активность 90 Sr 0,12±0,05 Бк/л, 3 H - 10,0±2,0 Бк/л). Снижение активности радионуклидов наблюдали также после впадения крупных притоков. Однако наиболее значительно снижается активность всех исследованных радионуклидов на участке от н.п. Муслюмово до н.п. Бродокалмак (\approx 91 км от плотины), где нет крупных притоков. Снижение активности 3 H безусловно не связано с сорбцией донными грунтами. По-видимому, 137 Cs и 90 Sr также мало сорбируются, так как дно здесь преимущественно каменистое либо песчаное. Вероятно, разбавление происходит за счет выхода грунтовых вод и мелких ручьев, пересыхающих в засушливый период.

В 2009 г. на участке «Асанов мост»-«Новый мост» активность 90 Sr в воде снизилась на 15,6%, 3 H — на 16,7%. В 2011 г. снижение составило соответственно 47,2% и 38,7%,. В 2012 г. активность 90 Sr в воде снизилась на 43,8%, 3 H — на 41,3%. Такие совпадения снижения активностей 90 Sr и 3 H позволяют предположить, что на данном участке сорбция и десорбция 90 Sr относительно сбалансированы и снижение обеспечивается разбавлением водой из реки Зюзелги.

Удельные активности 90 Sr и 3 H в воде взаимосвязаны. В верхнем течении реки в 40 пробах 2009-2012 гг. коэффициент корреляции между ними составил 0,76. В среднем за этот период в верхнем течении активность 3 H превышала активность 90 Sr в 11,2±1,2 раза. В нижнем течении это соотношение несколько снижается и составляет 9,3±1,6 раз.

Необходимо отметить, что с 2009 г. по 2012 г. активность 90 Sr и 3 H значительно выросла, как в отдельных пробах, так и в среднем за год (в 2009 г. – 10,4 Бк/л, в 2012 г. –32,7 Бк/л). Увеличение среднегодовой активности 90 Sr и 3 H отмечается также с 2007 г. по 2010 г. по данным НПО «Тайфун» и ЦЗЛ ПО «Маяк».[4,5,6]

Это еще раз подчеркивает актуальность исследования источников радиоактивного загрязнения реки Теча.

При анализе динамики среднегодовых значений активности ⁹⁰Sr в воде в верховьях реки Течи (от Асанова моста до с. Муслюмово) оказалось, что в 2000-2008 гг. активность ⁹⁰Sr, в воде в верхнем течении, как правило, увеличивалась в годы с наибольшим количеством осадков. Это объясняется тем, что во влажные годы подъем уровня воды в водоемах ТКВ приводил к увеличению фильтрации радионуклидов в обводные каналы и через плотину В-11, и это увеличение не было скомпенсировано разбавлением менее загрязненной водой с водосборной территории. По расчетам Баранова С.В. с соавт. зависимость между суммарным фильтрационным поступлением ⁹⁰Sr в каналы и уровнем водоема В-11 имеет нелинейный характер и возрастает от 8 Ки в год (при уровне воды 215,5 м) до 50 Ки в год (при уровне 216,8 м).[7] В 2010-2012 гг., после реконструкции плотины, колебания активности ⁹⁰Sr в воде верховьев реки происходили в противофазе с колебаниями осадков.

Активность радионуклидов в воде непостоянна и в течение года может изменяться в 3-5 раз. Повидимому, погодные условия могут оказывать на уровни загрязнения воды в реке двоякое влияние. С одной стороны, при выпадении дождей увеличивается разбавление в реке и В-11, в том числе, за счет относительно чистой воды из притоков, с другой стороны может увеличиваться сток с загрязненной территории и фильтрация из В-11.

Большинство авторов, исследовавших систему реки Теча, считают, что в настоящее время основным источником загрязнения речной воды является Теченский каскад водоемов. По данным Глаголенко Ю. В. с соавторами, с 1987 г., когда уровень воды в водоеме В-11 превысил отметку 215,5 м, загрязнение воды в обводных каналах, стало определяться процессом фильтрации воды из водоема В-11, а после 1995 г. загрязнение Течи ⁹⁰Sr определяется только фильтрационным поступлением.[8]

Поскольку в настоящее время важнейшим источником радиоактивного загрязнения воды в реке Теча 90 Sr и 3 H является сток из обводных каналов, необходимо было исследовать динамику загрязнения на всем протяжении каналов. Оказалось, что для ЛБК в первую очередь источником загрязнения 90 Sr является канал из озера Бердяниш, а затем — фильтрация из В-11. Для ПБК — фильтрация из В-11 после точки равных уровней.

Эти данные хорошо согласуются с результатами работы А.И. Зинина, согласно которым, до точки равных уровней активность 90 Sr в воде ПБК составляет не более 1 Бк/л, а в нижней части канала достигает 80-90 Бк/л.[9] Основной источник загрязнения воды ЛБК 3 H по-видимому фильтрация из водоема В-4 (пруд Метлино) и В-2 (озеро Кызылташ). Их вклад в загрязнение воды ЛБК 3 H требует дальнейших исследований. Активность 3 H в верхнем течении ПБК относительно

невысока и соответствует активности озере Улагач. В нижней части канала она увеличивается ≈ в 2,5 раза, очевидно, за счет фильтрации из В-11.

Таким образом, основной вклад в загрязнение речной воды Течи 90 Sr вносит фильтрация из В-11, в загрязнение 3 H — фильтрация из водоемов В-4 и В-2. Водоем В-10, несмотря на довольно высокие активности 90 Sr и 3 H в воде, по-видимому, не вносит существенного вклада в радиоактивное загрязнение воды Течи.

В настоящее время на ПО «Маяк» планируется и проводится работа по снижению фильтрации в обводные каналы. В том случае, если эти мероприятия окажутся достаточно эффективными, основным источником загрязнения речной воды может вновь стать пойменная почва и донные отложения.

В период исследования были отобраны пробы воды из 27 озер.

Активность 3 Н в пробах озерной воды была от 9,6 Бк/л до 76,5 Бк/л, 90 Sr – от 0,016 Бк/л до 0,69 Бк/л. Активность 137 Cs – от 0,007 Бк/л до 0,46 Бк/л. В озере Татыш активность 90 Sr в воде была 1,2 Бк/л, в озере Бердяниш – 5,17 Бк/л, в озере Урускуль 106,2 Бк/л. Уровень вмешательства 3 Н в питьевой воде – 7600 Бк/л, 137 Cs – 11,0 Бк/л, 90 Sr 4,9 Бк/л.[3]

Таким образом, во всех исследованных озерах, за исключением озера Татыш, являющегося технологическим водоемом, закрытым для посещения населением, и озёр Урускуль и Бердяниш, находящихся на территории Восточно-Уральского заповедника (в головной части ВУРС), удельная активность ³H, ⁹⁰Sr, ¹³⁷Cs в воде оказалась на два порядка ниже уровня вмешательства. Все исследованные озера, доступные для открытого водопользования не представляют опасности для населения при использовании для водопоя, полива и в рекреационных целях.

Как и следовало ожидать, активность 137 Cs и 90 Sr в воде коррелирует с их активностью в донных отложениях. Активность 137 Cs в воде и донных, а также 3 H в воде коррелирует с активностью 137 Cs в слое 0-10 см почвы ареала.

За период исследований отобрали также 79 проб воды из источников питьевого водоснабжения 32 населенных пунктов. Активность 90 Sr в питьевой воде была от 0,007 Бк/л до 0,23 Бк/л, активность 3 H – от 0,1 Бк/л до 47,1 Бк/л. Коэффициент корреляции активности 3 H в воде и расстояния источника от ПО «Маяк» составил -0,546 (р < 0,01). Активность 3 H в пробах не превышала уровня граничных значений, заданных линией тренда у=50e $^{-0,03x}$ с достаточно хорошей точностью (R^2 =0,96). Однако, в пределах этой области уровень загрязнения воды 3 H может значительно различаться, это зависит в первую очередь от характера источников водоснабжения, условий формирования и возраста подземных водяных линз.

Заключение.

Уровни радиоактивного загрязнения поверхностных вод в зоне влияния ПО «Маяк» значительно превышают глобальный фон. Для населения представляет опасность вода реки Теча и озер на территории Восточно-Уральского радиационного заповедника. Вода озер открытых для посещения и источников питьевого водоснабжения по содержанию техногенных радионуклидов соответствует радиационно-гигиеническим нормативам.

ЛИТЕРАТУРА

- 1. Мокров Ю. Г. Реконструкция радиоактивного стока основных радионуклидов с водами р. Теча в период 1949–1954 гг. // Бюллетень сибирской медицины. -2005. -№ 2. -ℂ. 110-116.
- 2. Атлас геоэкологических карт на территорию зоны наблюдения Φ ГУП «ПО «Маяк». М., Озерск, 2007. 106 с.
 - 3. СанПиН 2.6.1.2523-09 Нормы радиационной безопасности. М., 2009.
- 4. Радиационная обстановка на территории России и сопредельных государств в 2008 году. Ежегодник. Под ред. С. М. Вакуловского. – Обнинск, 2009. – 298 с.
- 5. Радиационная обстановка на территории России и сопредельных государств в 2009 году. Ежегодник. / Под ред. С. М. Вакуловского. – Обнинск, 2010. – 316 с.
- 6. Радиационная обстановка на территории России и сопредельных государств в 2010 году. Ежегодник. / Под ред. С. М. Вакуловского. – Обнинск, 2011. – 282 с.
- 7. Баранов С. В., Баторшин Г. Ш., Мокров Ю. Г., Глинский М.Л., Дрожко Е.Г., Линге И. И., Уткин С. С. Теченский каскад водоемов ФГУП «ПО «Маяк»: текущее состояние и перспективы // Вопросы радиационной безопасности. -2011. №1. С. 5-14.

- 8. Глаголенко Ю. В., Дрожко Е. Г., Мокров Ю. Г. Особенности формирования радиоактивного загрязнения р. Теча // Вопросы радиационной безопасности. -2007. №2. С. 27-36.
- 9. Зинин А. И., Зинина Г. А., Самсонова Л. М., Ястребков А. Ю. Оценка эффективности природоохранных мер по минимизации радиоактивного загрязнения правобережного канала Теченского каскада водоемов // Вопросы радиационной безопасности. 2010. №3. С. 11-26.