«ХАРАКТЕРИСТИКА РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ПЕДОСФЕРЫ В ЗОНЕ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ ПО ПРОИЗВОДСТВУ ОРУЖЕЙНОГО ПЛУТОНИЯ»

Казачёнок Н.Н., Попова И.Я., Полянчикова Г.В, Тихова Ю.П., Россинская Г.В., Коновалов К.Г., Коновалов А.И., Мельников В.С.

Уральский научно-практический центр радиационной медицины, Челябинск, Россия

Федеральное Государственное Унитарное предприятие «Производственное объединение «Маяк» (ФГУП «ПО «Маяк») находится на севере Челябинской области в между городами Кыштым и Касли. История предприятия начинается с Постановления СНК СССР № 3007–697сс от 1 декабря 1945 г., в котором была определена площадка под строительство первого реакторного завода № 817 для получения оружейного плутония. В июне 1948 г. достиг проектной мощности первый в Евразии реактор для наработки плутония. В январе 1949 г. начал работать радиохимический завод по выделению и переработке плутония. В августе 1949 г. на химико-металлургическом заводе был изготовлен первый ядерный заряд. В сентябре 1949 г. было произведено испытание атомной бомбы, а в августе 1951 — термоядерного оружия.[1]

Аэрозольные выбросы радионуклидов из труб заводов ПО «Маяк» в 1950–60-х гг. привели к загрязнению почвы в районе промплощадки предприятия до уровней порядка 10^{13} Бк/км 2 по 90 Sr и 137 Cs и 10^{10} Бк/км 2 по изотопам плутония. Одновременно радиоактивному загрязнению подверглись все компоненты наземных и водных экосистем, расположенные в зоне влияния ПО «Маяк».[2]

29 сентября 1957 года в хранилище радиоактивных отходов на ПО «Маяк» произошел взрыв емкости с отходами, в результате которого радиоактивные вещества суммарной β-активностью около 2 МКи образовали облако на высоте около 1 км. В результате осаждения смеси изотопов из облака образовался Восточно-Уральский радиоактивный след (ВУРС). Ось максимального загрязнения прошла через населенные пункты Бердяниш, Сатлыкова, Галикаева, Русская Караболка и далее до Тюмени.[3]

В апреле 1967 года на исследуемой территории отмечали выпадения радиоактивной пыли. В состав выпадений входили 137 Cs (48%), 90 Sr+ 90 Y (34%).[4]

В 1949—1956 гг. в систему р. Теча сбрасывались жидкие РАО, что привело к загрязнению пойменных почв. Многолетняя деятельность ПО «Маяк» привела к радиоактивному загрязнению почв Зауралья.

Методика работы.

В 2008-2012 гг. мы проводили исследования на территории северо-восточной части Челябинской области, подвергшейся радиоактивному загрязнению в результате деятельности радиохимического комбината ПО «Маяк». Для анализа динамики распределения радионуклидов по профилю почвы использовали материалы из базы данных Уральского научно-практического центра радиационной медицины.

Удельную активность ¹³⁷Cs определяли с помощью сцинтилляционного гамма-спектрометра с программным обеспечением «Прогресс». С 2011 г. для этой цели использовали спектрометрическую установку МКС-01А «МУЛЬТИРАД». В малоактивных пробах ¹³⁷Cs определяли радиохимически сурьмянойодидным методом после концентрирования его на ферроцианиде никеля. Удельную активость ⁹⁰Sr в пробах определяли экстракционным методом по дочернему ⁹⁰Y с использованием МИОМФК. Измерение β-активности выделенных радионуклидов проводилось на малофоновых радиометрических установках УМФ-1500 и УМФ-2000 с пламенно-фотометрическим контролем выхода носителя стронция. Метод определения ²³⁹Pu основан на концентрировании и очистке изотопов плутония на анионообменной смоле с последующим электрохимическим осаждением на стальные диски. Измерение α-активности выполняли на α-спектрометрической установке на основе ионизационной импульсной камеры. Идентификацию и определение удельной активности изотопов плутония в пробе проводили по энергии и интенсивности излучения, используя предварительно внесенную в пробу индикаторную метку (²³⁶Pu или ²⁴²Pu) известной активности.

Все применяемые методики и средства измерения имеют Государственные свидетельства о метрологической аттестации.

Результаты и обсуждение

В 2008-2011 гг. были отобраны пробы почвы и подстилки в 130 точках наземных экосистем в ареалах 52 ныне существующих и 2 отселенных населенных пунктов.

Практически во всех точках отбора плотность загрязнения 137 Cs значительно превышает глобальный уровень. Наиболее высокая плотность загрязнения наземных экосистем 137 Cs отмечена к югу и юго-востоку от ПО «Маяк» (Новогорный – 70-117 кБк/м², Татыш – 48-51 кБк/м², Худайбердинск – 51 кБк/м²) и в ареалах н.п., примыкающих к оси ВУРС (Большой Куяш – 55-69 кБк/м², Караболка – 44-50 кБк/м², Красный Партизан – 32 кБк/м², Аллаки – до 31 кБк/м², Мусакаева – 30 кБк/м²). На месте отселенной деревни Алабуга плотность загрязнения 137 Cs составила 98-116 кБк/м². Вне этих направлений высокие уровни загрязнения отмечены у н.п. Сулейманово – 79 кБк/м² и Карагайкуль – 25 кБк/м².

Загрязнение 90 Sr исследуемой территории (вне зоны ВУРС) значительно ниже, чем 137 Cs – среднее отношение удельной активности 137 Cs/ 90 Sr в верхнем (0-10 см) слое почвы по 104 точкам отбора в среднем составило 2,5±0,4. По оси ВУРС на месте отселенной деревни Алабуга удельная активность 90 Sr в слое почвы 0-5 см достигала 17900 Бк/кг. Суммарно по слою 0-20 см плотность загрязнения 90 Sr в этой точке составила 2400 кБк/м 2 . В других точках отбора в этом районе плотность загрязнения почвы 90 Sr колебалась от 94 до 913 кБк/м 2 .

Высокие уровни загрязнения 90 Sr сохраняются в ареалах н.п. Караболка, Мусакаева, Булзи, Аллаки, Красный Партизан, Береговой. Здесь отмечены участки с плотностью загрязнения 83-162 кБк/м 2 (2-4 Ки/км 2). В 2010-2013 гг. на этих участках выращивали зерновые культуры, были установлены теплицы, местные жители косили сено.

Выявлена статистически значимая обратная корреляция удельной активности 137 Сs в верхнем слое почвы (кроме точек у отселенных деревень Алабуга и Русская Караболка) и расстояния от промплощадки ПО «Маяк» (r= -0,26, p<0,01, 106 точек отбора). Также значима обратная корреляция активности 137 Сs и направления от ПО «Маяк», количественно выраженного как абсолютное значение угла отклонения от восточного направления (r= -0,25, p<0,01, 106 точек отбора). Для 90 Sr в этих же точках зависимость от расстояния незначима (r= -0,10, p>0,05). Значимая обратная корреляция отмечается между активностью 90 Sr и абсолютным значением угла отклонения от северного направления (r= -0,26, p<0,01). Интересно, что корреляция между активностью 90 Sr и отклонением от направления оси ВУРС ниже, хотя так же статистически значима (r= -0,22, p<0,05).

Если рассчитать коэффициенты корреляции для всех исследованных 130 точек, включая ареалы отселенных н.п. Алабуга и Русская Караболка, связи активности 137 Cs с расстоянием и восточным направлением снижаются, но остаются статистически значимыми (r=-0,20, p<0,05) и (r=-0,18, p<0,05). Для 90 Sr связь с расстоянием отсутствует (r=-0,01), связь с углом отклонения от северного направления снижается (r=-0,20, p<0,05), от оси ВУРС – повышается (r=-0,27, p<0,01).

Множественные коэффициенты корреляции между активностью радионуклидов, расстоянием и направлением от источника также статистически значимы, но очень малы (для $^{137}\mathrm{Cs}-0.32$ и для $^{90}\mathrm{Sr}-0.35$), поэтому рассчитывать уравнения регрессии для оценки уровней загрязнения промежуточных точек по расстоянию и направлению от источника загрязнения представляется нецелесообразным.

Практически во всех точках отбора наиболее загрязненным 137 Cs и 90 Sr оказался верхний слой почвы и лесная подстилка (в луговых почвах — дернина или степной войлок). Отношение удельной активности радионуклидов в слое 0-10 см к активности в слое 10-20 см не зависело от суммарной плотности загрязнения. В наибольшей степени на величину данного отношения влияет тип экосистемы: в лесных экосистемах среднее значение этого отношения для 137 Cs — 20,4±4,4, в луговых — 2,9±1,6 (хотя встречаются исключения). Для 90 Sr различия несущественны: в лесу — 3,4±0,9, на лугу — 2,8±1,5.

Отношение удельной активности 137 Cs в подстилке к активности в слое почвы 0-10 см составило в среднем 0.5 ± 0.1 , 90 Sr -1.5 ± 0.2 . Хотя удельная активность 137 Cs и 90 Sr в подстилке весьма высока, на суммарную плотность загрязнения она не оказывает большого влияния, так как объемная масса подстилки на 2 порядка ниже объемной массы почвы.

При анализе характера распределения 90 Sr в почвах ВУРС в разные сроки после аварии оказалось, что в лесных почвах за 50 лет, прошедших с момента аварии практически не наблюдали смещения максимума загрязнения из слоя 0-5 см. В залежном черноземе наблюдали более равномерное распределение 90 Sr по профилю почвы, что очевидно связано с перепашкой прошлых лет.

Распределение ⁹⁰Sr по профилю 30-сантиметрового слоя хорошо описывается экспоненциальной функцией вида $y=ae^{-bx}$, где y – содержание радионуклида в слое (% от общей плотности загрязнения 30-см слоя), x – порядковый номер 5-см слоя. Коэффициенты детерминации R^2 аппроксимирующих кривых для серой лесной почвы, а в начальный период после аварии и для дерново-подзолистой и чернозема, весьма высоки.[5] В отдаленный период после аварии усиливается избирательная аккумуляция ⁹⁰Sr в отдельных слоях дерново-подзолистой почвы, связанная, по-видимому, с неоднородностью физико-химических свойств. Неоднородность распределения ⁹⁰Sr по профилю чернозема объясняется механическим перемещением части радионуклида при обработке. Наибольший интерес представляет коэффициент b, с помощью которого можно рассчитать глубину, на которой происходит снижение плотности загрязнения до заданной кратности. Выпавший на поверхность почвы 90 Sr медленно мигрирует в более глубокие слои и коэффициент b уменьшается. Особенно четко прослеживается эта зависимость у серой лесной почвы: значение коэффициента в коррелирует с количеством лет, прошедших после аварии (r = -0.949, p = 0.02). У дерновоподзолистой почвы миграция ⁹⁰Sr происходит более интенсивно. Эта почва формируется при более высоком увлажнении, хвойный растительный опад содержит много органических кислот, способствующих выщелачиванию связанных элементов. На характер распределения ⁹⁰Sr по профилю чернозема наибольшее воздействие оказала перепашка в 1960-1990 гг.. Значения b для этих почв падают быстрее, однако зависимость b от времени выражена слабее: для дерново-подзолистой r = -

0.68, p = 0.20; для чернозема r = -0.79, p = 0.11. Более детально распределение ¹³⁷Cs и ⁹⁰Sr по профилю почвы исследовали на оси ВУРС (20 км, 30 км и 55 км от промплощадки) и к югу от ПО «Маяк» (7 км, 10 км и 20 км от промплощадки). Распределение ⁹⁰Sr и ¹³⁷Cs по почвенному профилю исследовали на 3 типах почв: серой лесной, дерново-подзолистой и черноземе. Несмотря на различные типы почв, различные источники и различную плотность загрязнения, на глубине свыше 20 см удельные активности ¹³⁷Cs и ⁹⁰Sr практически не различаются.

Значительное влияние на характер распределения радионуклидов по почвенному профилю оказывают агротехнические мероприятия. В 2007 г. на полях овощного севооборота ООО «Совхоз Береговой» в 47% случаев на поливных землях и в 19% случаев на богаре подпахотный слой 20-40 см содержал больше радионуклидов, чем пахотный слой 0-20 см.

В 2008-2012 гг. исследовали уровни загрязнения пойменных почв реки Теча.

Пойма реки Теча загрязнена радионуклидами в результате сбросов жидких радиоактивных отходов в 1950-1956 гг.

В пойме реки Теча наиболее загрязнена почва Асановских болот. Активность 137 Cs здесь в настоящее время варьирует от $1,6\times10^2$ Бк/кг до $1,6\times10^6$ Бк/кг, 90 Sr — от $1,5\times10^2$ до $5,5\times10^4$ Бк/кг, 239,240 Pu — от $2,9\times10^2$ Бк/кг до $2,4\times10^3$ Бк/кг.

При инфильтрации паводковых вод и атмосферных осадков вода, формируя подземный сток, проходит по всему профилю почвы до водоупорного горизонта, на уровень ее загрязнения оказывают влияние все слои почвы. Поэтому при исследовании источников загрязнения почвенногрунтовой, а затем речной воды необходимо иметь информацию об уровнях загрязнения всех слоев почвы. Изучение закономерностей миграции радионуклидов по профилю почв и донных отложений необходимо также для того, чтобы определять общий запас радионуклидов на загрязненной территории. Кроме того, особенности миграции радионуклидов позволяют судить об их подвижности.

В пробах почвы, отобранных на различном удалении от плотины водоема В-11 и от русла реки, вертикальное распределение раздионуклидов носит самый разнообразный характер.

В большинстве случаев 90 Sr в донных отложениях и в постоянно увлажненных болотных и прибрежной дерновой почвах мигрирует на большую глубину и аккумулируется в различных слоях.

¹³⁷Cs и ^{239,240}Pu в болотной почве мигрировали до 100 см, но наибольшее их количество содержится в слое 20-40 см. В дерновой почве они в основном остались в поверхностном слое.

Эти различия необходимо учитывать при оценке плотности загрязнения территории и расчете общего запаса радионуклидов.

Во многих случаях наибольшая активность ⁹⁰Sr отмечается над водоупорным глеевым слоем. Разнообразие профилей распределения радионуклидов в пойменной почве вполне объяснимо и связано со слоистым строением аллювиальных отложений, русловым процессом, ускорением инфильтрации воды в западинах и другими факторами. Однако это разнообразие в значительной степени осложняет оценку потенциальных источников вторичного загрязнения.

Пойменная почва имеют кислую и слабокислую реакцию: в разных слоях почвы Асановских болот pH от 4,52 до 5,66, почвы у Нового моста — от 5,89 до 6,07. Слабокислая реакция пойменных почв в настоящее время не способствует вымыванию 137 Cs из пойменных почв, однако она достаточно близка к критической. При изменении условий и падении pH до 4,0 и ниже поступление 137 Cs в речную воду из почвы может увеличиться во много раз.

При сопоставлении удельных активностей радионуклидов в пробах оказалось, что горизонтальное и вертикальное распределение 137 Cs и 239,240 Pu в почве и донных отложениях сходно. Для 352 проб почвы отобранных на разных участках по руслу, на разном расстоянии от реки и на разной глубине коэффициент корреляции между активностями этих радионуклидов составил 0,87. Для донных отложений коэффициент корреляции ниже - 0,69 (176 проб). Тем не менее, эти зависимости позволяют ориентировочно оценивать уровень загрязнения 239,240 Pu по результатам успектрометрического определения 137 Cs. Так для расчета удельной активности 239,240 Pu (A_{Pu}) в пробе почвы по удельной активности 137 Cs (A_{Cs}) в той же пробе можно использовать соотношение: $A_{Pu} = 0,04 \cdot A_{Cs}^{0,73}$. Для расчета активности 239,240 Pu в донных отложениях - соотношение: $A_{Pu} = 0,03 \cdot A_{Cs}^{0,78}$.

Обращают на себя внимание высокие активности 40 К в почве в верховьях. В почве Асановских болот активность 40 К достигала 3.1×10^3 Бк/кг, а в районе Нового моста -2.5×10^3 Бк/кг. Особенное внимание привлекает высокая активность 232 Th - до 1.4×10^3 Бк/кг в Асановских болотах и до 1.0×10^4 Бк/кг в районе Нового моста. Активность 226 Ra в почве невелика, на грани чувствительности метода.

Заключение

- 1. В природных лесных и луговых почвах Зауралья наиболее загрязнены $^{90}{\rm Sr}$ и $^{137}{\rm Cs}$ нижняя часть подстилки и верхний слой почвы (0-5 см). Глубже 20 см загрязнение разных почв радионуклидами практически не различается.
- 2. В пойменных болотных почвах 90 Sr распределяется по всему профилю, а 137 Cs и 239,240 Pu концентрируются на глубине 20-40 см.
- 3. В пойменных луговых дерновых почвах 90 Sr концентрируется на глубине до 40 см, а 137 Cs и 239,240 Pu преимущественно остаются в верхнем слое 0-10 см.

ЛИТЕРАТУРА

- 1. Челябинская область ликвидация последствий радиационных аварий / Под ред. А.В. Аклеева, Челябинск: Юж.-Урал. кн. изд-во, 2006. 344 с.
- 2. Стукалов П.М., Ровный С.И. Радиоэкологическая изученность зоны влияния ПО «Маяк» // Вопросы радиационной безопасности. 2009. Специальный выпуск №8. С.5-13.
- 3. Экологические и медицинские последствия радиационной аварии 1957 года на ПО «Маяк»/ Под ред. А.В.Аклеева, М.Ф. Киселева. М., 2001. 294 с.
- 4. Последствия техногенного радиационного воздействия и проблемы реабилитации Уральского региона / Под ред. С.К. Шойгу. М., 2002. 287 с.
- 5. Kostyuchenko V. A., Akleyev A. V., Peremyslova L. M., Popova I. Ya., Kazachonok N. N., Melnikov V. S. Environmental Migration of Radionuclides (90 Sr, 137 Cs, 239 Pu) in Accidentally Contaminated Areas of the Southern Urals / Radioactive Waste, Edited by Rehab Abdel Rahman, ISBN 978-953-51-0551-0, Publisher: InTech, April 25, 2012, pages 65-98.