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Abstract—A method is developed for calculating the output characteristics of a drum brake with f loating
shoes on the basis of the system configuration, the dimensions of the components, the frictional coefficient
in contact zones of the linings, and the driving forces on the shoes. By this means, the structural parameters
of the brake, their inference on the braking torque, the effectiveness of the shoes, the reaction forces in the
shoe supports, and the maximum pressure on the frictional linings may be determined at the design stage. As
an illustration, brake mechanisms with a single shoe and with servo amplification are calculated.
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Drum brakes with f loating shoes are used in cars
and light trucks. The f loating shoes may slip over the
inclined support or interact with one another through
an intermediate component. That ensures self-stabili-
zation of the shoes at the drum’s inner surface, elimi-
nating misalignment of the concentric frictional sur-
faces of the drum and shoes. Consequently, shoe wear
is uniform. Such brakes do not require high manufac-
turing precision. In addition, in comparison with fixed
shoes, they are rapidly prepared for operation [1, 2].

Classical methods of determining the output char-
acteristics of a drum brake with f loating shoes are
based on the following assumptions: the drum and
shoe are absolutely rigid; and the pressure on the fric-
tional lining is proportional to its radial deformation
[3–8].

Simple methods of calculating the braking torque by
graphical analysis were proposed in [3–5]. However,
the series of calculations of the braking torque with dif-
ferent structural parameters is time-consuming.

An analytical method of determining the braking
torque based on trial and error solution of the equilib-
rium equations for the shoes was proposed in [6]. This
approach is unsuitable for multivariant calculations.

Formulas for the braking efficiency of the shoes
were derived in [7]. They were used to study the influ-
ence of the brake’s structural parameters on the brak-
ing efficiency with parallel working planes of the shoe
supports.

Analytical expressions for the braking efficiency of
floating and fixed shoes when using different clamping
systems were presented in [8].

The maximum contact pressures at the shoes’ fric-
tional surfaces and the reaction forces in the shoe sup-

ports cannot be determined by the methods in [7, 8].
However, this information is required to select the
width of the frictional linings and to calculate the
strength of the shoe supports.

Analysis of classical methods of brake calculation
shows that they all have deficiencies and limitations.
Despite the successful use of finite-element analysis
for brake mechanisms, classical analytical methods
remain effective for design purposes, since they deter-
mine the braking torque with great accuracy [9, 10];
and they do not require impractical expenditures of
computational resources or time in determining the
structural parameters. Therefore, it is expedient to
minimize the deficiencies and expand the capabilities
of analytical methods for drum brakes.

In the present work, we describe a method of find-
ing analytical expressions for the braking torque of a
drum brake with f loating shoes; the braking efficiency
of the shoes; the performance of the brake mecha-
nism; the reaction forces in the shoe supports; and the
maximum pressure on the frictional linings. The
method is based on a simplified brake configuration,
the brake’s dimensions, and the forces created by
the clamp.

BASIC CONFIGURATION 
OF FLOATING SHOES

The floating shoe in the drum brake has two
degrees of freedom: it may rotate and slide along the
supports. We may distinguish between driving and
driven modes of the shoe: in the driving mode, it
rotates around the support in the same direction as the
drum; it is driven if it rotates in the opposite direction.
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642 GORBATENKO

Fig. 1. Basic structure of the driving shoe in a drum brake. 
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In Fig. 1, we show the shoe in driving mode when
the brake is turned on. The clamp exerts a force F on
the upper ring of the shoe, pressing the frictional lin-
ing against the rotating drum. Distributed radial load
p acts on the lining in that case; normal force dN and
frictional force dFf appear at an elementary area of
the lining. At the lower ring of the shoe, the support
exerts reaction force R.

In driven mode, the configuration is analogous
except that the elementary frictional force dFf is in the
opposite direction.

In the analysis, we make the following assump-
tions: the drum and shoe are absolutely rigid; the lin-
ing is elastic; the lining’s radius of curvature is equal to
the drum radius; there is no slipping between the drum
and lining; the frictional coefficient of the lining is
constant; the pressure on any elementary area is the
same over the width of the lining; and the pressure dis-
tribution over the arc of the lining is described by a
cosine function [2, 3, 6]

(1)

where pmax is the maximum pressure at the lining; ϕ is
the angle corresponding to the maximum pressure
(between the x axis and the axis of maximum pressure
at the lining); and α is the angular coordinate of the
frictional lining measured from the x axis.

We consider two Cartesian coordinate systems.
The system x′y′ is used to determine the position of the
brake components; its origin is at the axis of drum
rotation; the y′ axis is the symmetry axis of the brake
mechanism. To obtain the equilibrium equations of

α = ϕ − αmax( ) cos( ),p p
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the shoe, we use the coordinate system xy, which is
turned by an angle β relative to the x'y' system so that
the x axis is aligned with the bisector of the angle α0
corresponding to the extent of the lining. Because the
x axis is symmetric relative to the angle α0, the inte-
grals of the trigonometric functions may more easily
be calculated, and the resulting analytical formulas are
of simpler structure.

The angle β characterizes the asymmetric position
of the lining relative to the x' axis. When β = 0, the lin-
ing is symmetric with respect to the x' axis. We assume
that β is positive when the bisectrix of the lining arc
rotates in the opposite direction to the shoe around the
support; and negative when these rotations are in the
saem direction. The angle α1 between the beginning of
the frictional lining and the y' axis determines the
position of the lining with respect to the brake shoe:
α1 = π/2 – β – α0/2.

The notation adopted is as follows (Fig. 1): r is the
radius of the frictional surfaces of the drum and fric-
tional lining; l1 and l5 are, respectively, the coordinates
of the points of shoe–clamp contact; l2 and l3 are,
respectively, the coordinates of the points of shoe–
support contact; l4 and l6 are the distances at which the
reaction R of the support and the driving force F act
relative to the axis of drum rotation; γa is the inclina-
tion of the working plane of the shoe support; γf is the
frictional angle at the point of shoe–support contact;
δd is the inclination of the clamp’s supporting plate; δf
is the frictional angle at the contact point between the
shoe and the clamp’s supporting plate; and δ and γ are
the angles between the x' axis and the vectors F and R.

The angles δ and γ are determined from the
formulas

where μd and μa are the frictional coefficients of the
shoe with the clamp and support, respectively.

It follows from Fig. 1 that

This approach permits determination of the output
parameters of most drum brakes with f loating shoes
when using different clamps and different configura-
tions of the shoe support’s working planes: with incli-
nation γa > 0 or γa < 0, in a vertical position (γa = 0), or
for brake mechanisms in which the lower ends of the
shoes interact through an intermediate element.

EQUILIBRIUM EQUATIONS
OF BRAKE SHOES

The necessary and sufficient condition for equilib-
rium of the shoe is that the sum of the projections of

δ = δ + δ = δ + μarctan ;d f d d

γ = γ + γ = γ + μarctan ,a f a a

= + γ γ
= + δ δ

4 2 3

6 1 5

( tan )cos ;
and ( tan )cos .

l l l
l l l
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OUTPUT PARAMETERS OF A DRUM BRAKE WITH FLOATING SHOES 643
all the forces onto the x and y axes and the sum of their
algebraic torques relative to the drum axis (point С)
are zero.

The system of equilibrium equations of the drum
shoes in driving and driven modes is as follows

(2)

In Eq. (2) and the following formulas, the upper
sign in the operations  and  correspond to driving
mode and the lower sign to driven mode.

To simplify the solution of Eq. (2), we write Eq. (1)
in the form

where pc and ps are parameters determined from the
equations

(3)

The elementary forces associated with the pressure
and friction on an infinitesimal area of the lining are
determined by the formulas

where w is the width of the frictional lining; and μ is
the frictional coefficient of the lining.

The integrals in Eq. (2) take the form
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(7)

(8)

where Iss, Isc, Icc, Is, and Ic are tabular values of the
integrals of trigonometric functions

Substituting Eqs. (4)–(8) into Eq. (2) and taking
into account that the integrals Isc and Is are zero, we
find that

(9)

This system of equations is linear with respect to R,
pc, and ps. It is solved in symbolic form by means of the
MuPAD computer algebra system. We obtain the dis-
tribution parameters of the pressures pc and ps and the
reaction in the shoe supports R

(10)

(11)
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DETERMINING THE OUTPUT
PARAMETERS OF THE DRUM BRAKE

The basic output characteristics of the drum brake
are the braking torque, the braking efficiency of the
shoes, the brake’s margin of performance, the maxi-
mum pressure at the frictional linings, and the reac-
tion forces in the shoe supports.

The braking torque on the drum due to shoes in
driving mode (M1) and driven mode (M2) is equal to
the sum of the elementary frictional torques along the
arc of the frictional lining

(13)

Substituting Eq. (10) into Eq. (13), we may write
the frictional torque of a single shoe in the form

(14)

The braking efficiency C1, 2 of the shoe is defined as
the ratio of the equivalent frictional force of the shoe
on the drum and the driving force of the shoe

(15)

The equivalent frictional force Feq1, 2 is the force
that creates a frictional torque corresponding to
Eq. (14) when applied to the point of intersection of
the x' axis and the frictional surface of the lining at a
distance equal to the drum radius. In other words, it is
the force such that  = . Hence, on the basis
of Eqs. (14) and (15), we may write the braking effi-
ciency in the form

(16)

Consequently, the braking torque developed by a
single shoe is  = .

The frictional torque developed by the drum brake is

(17)

The braking efficiency C1, 2 determines the effi-
ciency with which the shoe’s driving force is converted
into a frictional force. In other words, it determines
the frictional force on the drum that may be created by
a shoe with a specified driving force. This characteris-
tic may be used to compare brakes of different config-
urations.
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It follows from Eq. (14) that the braking torque of a
shoe in driving mode increases with decrease in the
denominator and tends to infinity when  –  +

 = 0. Then, with shoe–drum contact, the braking
torque increases uncontrollably (even with constant
driving force) until drum motion is blocked. After
removing the force from the brake pedal, the shoe
remains engaged with the drum; in other words, the
brake is self-locking [1, 7]. That prevents smooth reg-
ulation of the braking torque by adjusting the pressure
in the drive.

The frictional coefficient of the lining when the
brake is self-locked is found from the formula

(18)

The value of μ∞ depends only on the brake’s design
parameters.

The degree to which self-locking is prevented may
be assessed by means of the brake’s margin of perfor-
mance

(19)
If the brake is at the limit of self-locking, then

km = 1.
To eliminate self-locking, we require that km > 1.5.
We now consider the load distribution over the arc

of the lining.
From Eq. (3), the angle corresponding to maxi-

mum pressure is

(20)
Then the maximum pressure may be determined by

means of the formula

(21)

The maximum pressure must not exceed the limit-
ing permissible value for the chosen lining material.

Thus, the output parameters of the drum brake are
as follows: the efficiency of the brake shoes; the fric-
tional torque of the brake mechanism; the brake’s
margin of performance; the maximum pressure at the
frictional lining; and the reaction of the shoe supports.
The corresponding formulas are Eqs. (16), (17), (19),
(21), and (12).

EXAMPLES
Example 1

We want to determine the output parameters of a
drum brake with a single shoe in driving mode
(Fig. 2a). The initial data are as follows: r = 127 mm;
l1 = 100 mm; l2 = 80 mm; l3 = 20 mm; l5 = 30 mm;
α0 = 100°; w = 50 mm; γa = 0; δd = 0; μ = 0.4; μd =
0.12; μa = 0.12;  = 2500 N; β1 = −5°; and β2 = +5°.

0b μ1b

μ2
2b

∞
− −μ =

2
1 1 0 2

2

4 .
2

b b b b

b

∞= μ μ/ .mk

ϕ = arctan( / ).s cp p

= ϕ = ϕmax max/ cos or / sin .c sp p p p

1,2F
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Fig. 2. Drum brake with f loating shoes: (a) with one driv-
ing shoe; (b) with two driving shoes; (1) drum; (2) driving
shoe; (3) driven shoe; (4) shoe support; (5) hydraulic cyl-
inder; (6) tension spring; (7) direction of drum rotation;
(8) floating element. 
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1. We calculate the braking efficiency of the shoes
in driving and driven mode from Eq. (16): C1 = 2.476,
C2 = 0.559. The shoe in driving mode creates a braking
torque almost 4.5 times greater than the shoe in driven
mode. That may be explained in that the torques of the
elementary frictional forces at the driving shoe are in
the same direction as the torque of the driven shoe.
That presses the shoe more firmly against the drum.
At the driven shoe, the torques of the elementary fric-
tional forces are in the opposite direction to the torque
of the driving force and weaken the force pressing the
shoe to the drum.

2. Using Eq. (17), we find the braking torque of the
mechanism: M = 963.661 N m.

3. From Eqs. (18) and (19), we determine the fric-
tional coefficient of the lining μ∞ = 0.845 correspond-
ing to self-locking of the brake; and the brake’s margin
of performance km = 2.187. This is higher than the rec-
ommended value.
RUSSIAN ENGINEERING RESEARCH  Vol. 43  No. 6
4. From Eq. (20), we find the angle corresponding
to maximum pressure at the linings of the driving and
driven shoes: ϕ1 = −0.660 rad; ϕ2 = 0.722 rad.

5. We determine the maximum pressure at the fric-
tional lining for the driving and driven shoes by means
of Eq. (21):  = 2.013 × 106 N/m2;  = 4.786 ×
105 N/m2.

6. From Eq. (12), we determine the reaction at the
supports of the driving and driven shoes: R1 = 1.275 ×
104 N; R2 = 973.128 N.

These are the initial data in designing the attach-
ment of the shoe supports to the frame of the mecha-
nism and calculating the crumpling of the lower ends
of the brake shoes.

Example 2

We want to determine the output parameters of a
drum brake with servo amplification and two shoes in
driving mode (Fig. 2b). The initial data for the first
shoe are as follows (Fig. 2b, on the left): r = 127 mm;
l1 = 100 mm; l2 = 80 mm; l3 = 20 mm; l5 = 30 mm;
α0 = 100°; w = 50 mm; γa = 0; δd = 0; μ = 0.4; μd =
0.12; μa = 0.12; and β = −5°. The driving force of the
first shoe is F1 = 2500 N. The initial data for the sec-
ond shoe are as follows (Fig. 2b, on the right): l1 =
80 mm; l2 = 100 mm; l3 = 26 mm; and l5 = 20 mm; the
other parameters are the same as for the first shoe.

For this brake mechanism, the lower ends of the
shoes are connected by a f loating element. When the
brake is switched on, the piston of a hydraulic cylinder
is extended and presses the shoe against the rotating
drum. The frictional force results in capture of the
shoes by the drum. They rotate until the shoulder of
the piston for the second shoe contacts the housing
of the hydraulic cylinder, and the shoes reach equilib-
rium.

For both shoes, the driving force is the force F1 cre-
ated by the hydraulic cylinder. The support of the first
shoe is a f loating element; the support for the second
shoe is the housing of the hydraulic cylinder. The fol-
lowing notation is employed here: R1 and R2 are the
reactions of the shoe supports; Feq1 and Feq2 are the
equivalent frictional forces of the shoes. The angle of
rotation of the f loating element when the brake is on is
assumed to be negligibly small. Therefore, we regard
the vector of reaction R1 as parallel to the horizontal
axis x. In this brake mechanism, the second shoe oper-
ates with servo amplification. Therefore, it is activated
by reaction R1 and frictional force Feq1 of the primary
shoe. Since the reaction is much larger than the driv-
ing force created by the hydraulic cylinder, this brake
is characterized by high braking efficiency.

We now determine the output parameters.
1. We calculate the braking efficiency of the first

shoes Eq. (16): C1 = 2.476.

1maxp 2 maxp
  2023
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Fig. 3. Braking efficiency  of the shoes and reaction
 of the shoe support as a function of the inclination γa

of the shoe support (a);  as a function of γa and the lin-
ing’s frictional coefficient μ (b); and the pressures p1 and
p2 along the arc of the lining for the driving and driven
shoes as a function of α and γa (c). 
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2. We find the braking efficiency of the second shoe

(22)

We determine  =  from Eq. (16), taking
into account that the second shoe is in driving mode:

 = 1.468.
To find a formula for the ratio R1/F1, we write an

equation for the torques of all the forces on the first
shoe relative to the drum’s axis of rotation (point C)

(23)

From Eq. (23)

(24)

From Eqs. (22) and (24), we find that C2 = 5.706.

3. We determine the braking torque from Eq. (17):
M = 1.025 × 104 N m.

4. From Eq. (10), we find the parameters of the
pressure distribution over the lining arc for the first
(pc1) and second (pc2) shoes, taking into account that
the driving force is F = F1 for the first shoe and
F = F1(l1 + rC1)/l2 for the second shoe: pc1 = 1.591 ×
106 N/m2; pc2 = 3.666 × 106 N/m2.

5. From Eq. (11), we find the parameters of the
pressure distribution over the lining arc for the first
(ps1) and second (ps2) shoes: ps1 = −1.233 × 106 N/m2;
ps2 = –3.221 × 106 N/m2.

6. We calculate the angle corresponding to the
maximum pressure at the linings of the driving and
driven shoes from Eq. (20): ϕ1 = −0.660 rad; ϕ2 =
−0.721 rad.

7. Using Eq. (21), we determine the maximum
pressure at the frictional linings of the first and second
shoes: p1max = 2.013 × 106 N/m2; p2max = 4.880 ×
106 N/m2.

8. From Eq. (23), we obtain the support reaction
for the first shoe: R1 = F1(l1 + rC1)/l2. Then R1 =
1.295 × 104 N.

9. We write the equation for the torques of the
forces on the second shoe relative to the drum axis

(25)

Writing an expression for Feq2 on the basis of
Eq. (22), we substitute it into Eq. (25) to find the sup-

port reaction for the second shoe: R2 = .

Then R2 = 3.415 × 104 N.

= = =eq 2 eq 2 1 1
2 1

1 1 1 1

* .
F F R R

C C
F R F F

2*C eq 2 1/F R

2*C

= + − = 1 1 1 1 1 20, 0.CM F l rFC R l

+=1 1 1

1 2

.R l rC

F l

= − + = 1 1 2 2 eq 20, 0.CM R l R l rF
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2
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l
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Example 3

We now investigate the influence of the inclination
γa of the shoe support on the output parameters of the
brake mechanism in Fig. 2a, with variation in γa from
0° to 20° in 10° increments. The brake parameters are
the same as in Example 1.

To that end, we write a Matlab program and plot
Fig. 3. Analysis shows that, within the given range,
variation in the inclination γa of the shoe support has
 ENGINEERING RESEARCH  Vol. 43  No. 6  2023



OUTPUT PARAMETERS OF A DRUM BRAKE WITH FLOATING SHOES 647
no influence on the reactions  of the shoe supports
and the braking efficiency  of the shoes and hence
on the system’s braking torque. The driving shoe is
fundamental to the creation of the braking torque.

In Fig. 3b, we plot the braking efficiency as a func-
tion of the lining’s frictional coefficient and the incli-
nation of the shoe support. We see that, with increase
in the frictional coefficient of the lining, the braking
efficiency C2 of the driven shoe gradually approaches a
constant value, whereas the braking efficiency of the
driving shoe increases; the function  under-
goes a discontinuity at the point , as indicated
by the vertical lines. With increase in γa, the brake’s
margin of performance declines. For example, when
γa = 0° and γa = 20°, the parameter  is 0.87 and 0.68,
respectively, while the brake’s margin of performance
is 2.17 and 1.70, respectively. The sensitivity of the
braking efficiency of the driving shoe to change in the
lining’s frictional coefficient increases with increase
in γa. That decreases the operational stability of the
brake mechanism.

In Fig. 3c, we show the dependence of the inclina-
tion of the shoe support. With zero inclination, the
maximum pressure at the driving shoe is in the lower
section at the shoe support; for the driven shoe, by
contrast, the maximum pressure is in the upper part of
the lining at the clamp. With increase in γa, the maxi-
mum pressure at the driving shoe is shifted to the
upper part of the lining toward the clamp, while the
location of the maximum pressure at the lining of
the driven shoe remains unchanged. Since the pres-
sure distribution over the length of the lining deter-
mines its wear, it is obvious that the inclination of the
shoe support greatly affects the lining wear for the
driving shoe. Negative pressure values in the lower
part of the lining for the driven shoe indicate that this
lining is not loaded over the whole length but only
where the pressure is positive [11]. By varying β and γa,
we may ensure positive pressure over the whole length
of the lining.

CONCLUSIONS
We have investigated how the inclination of the

shoe support affects the output parameters of the
brake mechanism. We find that it does not affect
the frictional torque of the drum brake but signifi-
cantly affects the pressure distribution over the arc of
the lining, especially for the driving shoe, and also the
brake’s margin of performance. Therefore, the incli-
nation of the shoe support must be selected on the

1,2R

1,2C

= μ1 ( )C f

∞μ = μ

∞μ
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basis of the need to ensure the required shoe wear and
the brake’s performance.

On the basis of the proposed formulas, the influ-
ence of various combinations of structural parameters
on the output parameters of the brake mechanism may
be rapidly analyzed at the design stage, and parameters
ensuring the required braking torque and guaranteeing
the required brake performance may be selected.
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