УДК 666.291.5

СИНТЕЗ ФОСФОРСОДЕРЖАЩИХ ПИГМЕНТОВ

И. В. ПИЩ, Р. Ю. ПОПОВ, В. В. КОРЕШКОВ Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

В настоящее время возрастает потребность в создании новых коррозиестойких пигментов, которые используются в лакокрасочной и керамической промышленности.

Такие пигменты синтезируются на основе химически стойких кристаллических структур, в которых возможно изоморфное замещение входящих ионов на ионы d-элементов, обладающих хромофорными свойствами (Co^{2^+} , Ni^{2^+} , Cr^{3^+} , Fe^{3^+} и др.). В основном — это шпинели, корунд, гранаты и т.д.

Однако применение фосфатных неорганических пигментов ограничено. Хотя известно, что фосфор в пигментах повышает их кислотостойкость.

Синтез пигментов проводили на основе кристаллической структуры гранатов R_3^2+ , $R_2^{3+}(SiO_4)_3$, где $R^{2+}-Ca^{2+}$, Mg^{2+} , Fe^{2+} , Mn^{2+} ; $R^{3+}-Al^{3+}$, Cr^{3+} , V^{3+} и др.

Кислотный радикал $[SiO_4]^4$ замещали $[PO_4]^{3^-}$. Исходные компоненты тщательно измельчали и пропитывали раствором H_3PO_4 . После сушки полученные смеси обжигали в интервале температур 950–1150 °C с выдержкой 1 ч.

Синтезированные пигменты подвергали измельчению и определяли основные физико-химические свойства. В качестве исходных материалов использовались $CaCO_3$, Al_2O_3 , H_3PO_4 , растворимые соли Co, Ni, Cr, Fe.

Определены цветовые характеристики полученных пигментов: доминирующая длина волны и чистота цвета.

Пигменты сиреневого цвета получены при частичном замещении ионов Mg^{2+} на Co^{2+} в системе $3MgO\cdot Al_2O_3\cdot P_2O_5$.

При введении вместо P_2O^5 оксида SiO_2 цвет пигмента был синефиолетовый, что также подтверждалось результатами спектрофотометрических исследований образцов.

В процессе синтеза пигментов наблюдается изменение координации ионов кобальта. При наличии в составе массы SiO_2 ионы Co^{2+} переходят из октаэдрического в тетраэдрическое положение, что подтверждается изменением цвета. При введении NiO в состав фосфоросодержащих пигментов цвет их становится светло-лимонный, что предопределяется тетраэдрической координацией Ni^{2+} .

При частичной замене в составе массы Al_2O_3 на Cr_2O_3 и Fe_2O_3 при температуре синтеза 1150 °C цвет пигмента соответственно зеленый и красно- коричневый при насыщенности цвета 18-56 %.

Фазовый состав синтезированных пигментов представлен α-кварцем, кристобалитом, муллитом и оксидами переходных металлов, участвующих в образовании кристаллических структур.

По известной методике определялась химическая стойкость пигментов. лах до % р заны в дакокр а также окраи. сти. Кислотостойкость по отношению к H₂SO₄ находилась в пределах 96,3–97,6 %. Аналогичные результаты получены при испытании с 30 % раствором

Синтезированные пигменты могут быть использованы в лакокрасочной промышленности для приготовления грунтовок, а также окрашивания