УДК 624.131.37:624.131.43 ОПРЕДЕЛЕНИЕ НЕСУЩЕЙ СПОСОБНОСТИ СВАЙ С УЧЁТОМ ДИЛАТАНСИИ ПРИ ИСПОЛЬЗОВАНИИ ПОВЫШАЮЩЕГО КОЭФИЦИЕНТА УСЛОВИЙ РАБОТЫ

Т. М. УЛАСИК Учреждение образования «БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

Исходя из того, что в практике проектирования и строительства часто встречаются несвязные песчаные грунты, предлагается качественно новый подход к определению несущей способности свай. Предлагаемый метод определения основывается на использовании в расчётах скорректированного значения расчетного сопротивления песчаных грунтов на боковой поверхности забивных свай и свай-оболочек с учетом дилатансии. В табл. 1 приведены значения расчётного сопротивления с учётом дилатансии $R'_{\rm fi}$ и $R_{\rm fi}$, соотношение которых можно определить как коэффициент условий работы $k_{\rm dil}$ несвязных грунтов с начальным коэффициентом пористости te=0.5 варьируется в следующих пределах: для песчаных грунтов крупных — от 1,85 до1,58; для песков средних — от 2,0 до 1,57; для песков мелких — от 1,74 до 1,54.

Табл. 1. Расчетные сопротивления песчаных грунтов на боковой поверхности забивных свай и свай-оболочек с учетом дилатансии

Средняя глубина	Расчетные сопротивления і-го слоя грунтов на боковой		
расположения	поверхности забивных свай и свай-оболочек ((R'fi), кПа,)		
слоя грунта, м	песчаного массива грунта с начальным коэффициентом		
	пористости е = 0,5		
	крупных	средних	мелких
1	102(55)	90(45)	70(40)
2	106(60)	94(55)	77(50)
3	110(65)	98(60)	84(55)
4	115(70)	103(63)	91(58)
5	119(75)	107(68)	97(61)

При этом оговаривается, что коэффициент пористости соответствует начальному напряжённому состоянию, а пласты грунтов при расчёте следует расчленять на однородные слои толщиной не более 2 м. В скобках указаны нормативные значения расчётного сопротивления $R_{\rm fi}$, используемые в расчётах свай согласно $\Pi4\text{-}2000$ к CHБ 5.01.01.-99.

Использование разработанных автором табличных значений расчётных сопротивлений несвязных грунтов (с учётом дилатантной составляющей сдвига несвязного грунта) на боковой поверхности забивных свай и свайоболочек для соответствующих значений начального коэффициента пористости массива грунта ведёт к повышению точности расчётов несущей способности по 1-й группе предельных состояний (по несущей способности грунта основания).

Проведенные исследования несвязных грунтов на контактный сдвиг с учётом явления дилатансии позволяют сделать следующие воводы.

- 1. Уточнённая методика испытаний несвязных грунтов при стеснении объёмных деформаций позволяет определить более точные значения параметров прочности при контактном сдвиге.
- 2. Дилатантные распорные напряжения оказывают определённое влияние на моделируемое контактное трение, что не учитывается в традиционных методах испытаний и расчётов.
- 3. На развитие дилатантных напряжений при сдвиге существенное влияние оказывают начальные физические характеристики несвязного грунта.
- 4. Уточнённые параметры прочности могут быть использованы в расчётах несущей способности свай при определении скорректированного значения расчётного сопротивления на боковой поверхности в несвязных грунтах.