ВЫБОР СРЕДСТВ ОЧИСТКИ ВОЗДУХА ОТ ПЫЛИ КУКУРУЗЫ

Е.М. Агашков¹, Т.И. Белова², К.М. Андреев³

^{1, 3} Орловский государственный университет имени И.С. Тургенева ² Брянский государственный аграрный университет

В статье представлены основные параметры, используемые при выборе средств очистки воздуха, выбрасываемого в атмосферу с приёмного пункта комбикормового предприятия. Рассмотрены различные типы циклонов и их эффективность при улавливании пыли кукурузы.

Ключевые слова: пыль кукурузы, дисперсный состав, средний диаметр частиц, степень очистки, циклон.

Пыль является одним из основных загрязнителей атмосферы. Исследования пыли помогают определить и оценить уровень загрязнения воздуха и его влияние на здоровье животных, растений, а также самого человека. Вдыхание пыли может вызывать различные заболевания дыхательной системы, такие как астма, хроническая обструктивная болезнь легких и рак легких [1,2].

Отдельно следует выделить пыли органического происхождения, которые образуются на зерноперерабатывающих предприятиях, так как их можно подразделить на зерновую пыль и пылеобразующий материал самого сырья [3]. Для примера кукуруза в зависимости от состояния, может представлять собой как зерновую пыль при поставке цельного зерна, так и почти полностью органическую пыль самой кукурузы из дробленного сырья. Концентрации пыли кукурузы, образующейся при выгрузке на приёмных пунктах комбикормовых предприятиях, составляют 45-191 мг/м³ в рабочей зоне оператора, что в 7-32 раз больше значения ПДК в рабочей зоне и приводит к значительному распространению в атмосфере на прилегающей территории.

Чтобы уменьшить выбросы пыли на предприятии необходимо устанавливать аспирационные системы по локализации источников выброса с обязательным оснащением средствами многоступенчатой очистки воздуха, включающей в себя: циклоны на первом этапе и фильтрационные установки на втором [4]. Циклонные установки являются основными для очистки воздуха от среднедисперсной и крупнодисперсной пыли, при этом они могут длительное время функционировать без обслуживания за счет наличия бункера осевшей

пыли, а также снижать концентрации до минимальных значений для продолжительного функционирования фильтров [5,6].

Согласно методике расчета циклонов, предложенной НИИОГАЗом, для оценки эффективности используются следующие параметры: расход очищаемого газа, температура и динамическая вязкость воздуха, абсолютная плотность частиц пыли, а также дисперсный состав улавливаемой пыли [8]. Из этих параметров, основную проблему представляет дисперсный состав, так он носит вероятностный характер и зачастую распределение частиц подчиняется логнормальному закону, где размер частиц приводится в виде его десятичного логарифма [9].

Среди методик получения дисперсного состава пыли используются седиментационные, центробежной сепарации, оптические и микроскопический. Наиболее удобным является микроскопирование аналитических фильтров, на которые были отобраны образцы пыли, а также получены концентрации. Ещё одним из достоинств этой методики является возможность исследования пыли при малых концентрациях [10].

Нами были проведены исследования пыли кукурузы, отобранной на аналитический фильтр, с помощью светового микроскопа в проходящем свете. При исследовании был использован микроскоп типа Микомед, где был установлен объектив с кратностью $10\times$, линза Барлоу с кратностью $2\times$, цифровая камера с размером изображения 3488×2618 пикселей, что дало размер изображения 2396×1797 мкм.

С целью сохранения чистоты объектива на аналитический фильтр устанавливалось покровное стекло толщиной 0,1 мм.

Чтобы обеспечить достоверные данные о дисперсном составе пыли, было произведено 23 микрофотографий с различных частей фильтра.

Дальнейшая обработка изображений потребовала выделения частиц на фильтре, что могла производиться программная обработка количества и формы частиц с помощью графического редактора ImageJ. Результаты выделения частиц показаны на рисунках 1а и 1б.

Рис. 1. Примеры микрофотографий после графической обработки

Программа ImageJ позволила получить наибольший линейный размер, площадь и периметр каждой частицы, по которым был определен диаметр каждой частицы, близкий к аэродинамическому, что позволило использовать эти данные для расчета циклонов.

Основные результаты микроскопирования приведены в таблице 1.

Таблица 1. Результаты микроскопирования аналитических фильтров

Наименование параметра	Значение		
Количество частиц, шт	12761		
Размер наименьшей обнаруженной частицы, мкм	0,97		
Размер наибольшей обнаруженной частицы, мкм	63,12		

После этого нами было определены параметры логарифмического нормального распределения частиц пыли по количеству и произведена оценка параметров дисперсного состава по массе, результаты которых приведены в таблице 2.

Таблица 2. Параметры дисперсного состава пыли кукурузы

Наименование параметра	Значение параметра				
Распределение по количеству					
Средний размер частиц, мкм	11,05				
Логарифм среднего квадратического отклонения	0,17				
Распределение по массе					
Средний размер частиц, мкм	16,29				
Логарифм среднего квадратического отклонения	0,16				

Полученные значения дисперсного состава пыли кукурузы могут быть использованы при выборе всех средств очистки воздуха от пыли. Ниже, в таблице 3 представлены результаты расчета параметров циклонов, применяемых в зерноперерабатывающей промышленности, такие как ЦН-11, ЦН-15, ЦН-24, а также эффективный циклон типа СЦН-40.

 Таблица 3. Результаты расчетов циклонов для очистки воздуха от пыли кукурузы

№		Значение параметра				
Π/Π	Наименование параметра	ЦН-11	ЦН-15	ЦН-24	СЦН-40	
1	Расход воздуха, м ³ /ч	1000				
2	Температура воздуха, °С	20				
3	Абсолютная плотность частиц, кг/м ³	2300				
4	Диаметр циклона, мм	0,3	0,3	0,3	0,5	
5	Высота циклона, мм	1314	1368	1704	1650	
6	Масса циклона, кг	37	40	84	75	
7	Фактическая скорость воздуха в циклоне	3,93	3,93	2,21	1,41	
8	Диаметр частиц, улавливаемых на 50%, мкм	2,02	2,50	7,26	0,88	
9	Степень очистки, %	99,04	98,25	84,42	99,54	
10	Доля выбрасываемой пыли, %	0,96	1,75	15,58	0,46	
11	Потери давления, Па	2280	1442	221	1326	

Из таблицы 3 видно, на данный момент наибольшей степенью эффективности обладает циклон СЦН-40 по сравнению с другими, при этом его масса не является значительной, также потери давления по сравнению с ЦН-11 и ЦН-15 ниже, что приведёт к снижению удельных энергозатрат на единицу очищаемого воздуха. Циклон ЦН-24 в этом случае обладает наименьшей эффективностью по кукурузной пыли из рассмотренных, а также наибольшими габаритами и массой, что усложнит его установку на территории предприятия.

Библиографический список

- 1. Славин. С, Быль про пыль // Юный техник. 2010.С 20-22.
- 2. Маринин Н. А., Иванов В. А. Об исследовании дисперсного состава пыли // Биосферная совместимость: человек, регион, технологии.
- 3. Дисперсный состав пыли до разгрузки подсолнечного шрота и пшеницы в приемный бункер / Е. М. Агашков [и др.] // Безопасный и комфортный город: сб.

- науч. трудов по материалам V Междунар. науч.-практ. конф. Орёл, 2022. С. 345—349.
- 4. Исследование физико-механических свойств пыли / Аверкова О. А., Крюков И.В., Уваров В. А., Минко В. А., Крюкова О. С., образуемой в маникюрных кабинетах // Вестник БГТУ им. В. Г. Шухова. 2019. № 2. С. 69–80. DOI: 10.12737/article 5c73fc18596104.6069608.
- 5. Оптико-электронные методы изучения аэрозолей/ [С. П. Беляев [и др.]] М.: Энергоиздат, 1981 227, [3] с.:ил. Прил.: с. 212-213.
- 6. Фукс Н. А., Механика аэрозолей М.: Изд-во АН СССР, 1955. 352 с.
- 7. Лясин Р. А., Багров В. А., Азаров М. Д. Определение морфологического состава пылевых частиц // Инженерный вестник Дона. 2022. №6. С.759-765.
- 8. Савин. А, Пыль. Как избавиться от пыли // Чистый воздух. 2009. С. 1-2.
- 9. Колмогоров А. Н., О логарифмически нормальном законе распределения частиц при дроблении // ДАН СССР. 1941. Т. 31. № 2. С. 1030— 1039.
- 10. Коузов, П. А. Основы анализа дисперсного состава промышленных пылей и аэрозолей. Л.: Химия, 1987. 264 с.