SHORT COMMUNICATIONS

To the Analysis of Nonlocal Problems of the Theory of Nonlinear Differential Systems

V. N. Laptinskii ${ }^{1 *}$
${ }^{1}$ Belarusian-Russian University, Mogilev, 212000 Belarus
e-mail: *lavani@tut.by

Received May 26, 2022; revised September 15, 2022; accepted October 21, 2022

Abstract

We propose a constructive approach to proving the existence of solutions of operator equations in a Banach space. This approach is applied to the construction and analysis of solutions of matrix Riccati equations bounded on the half-line and not containing a linear term.

DOI: 10.1134/S0012266122110131
This work is a continuation of studies in [1-5]. It develops an operator approach to the study of solutions of nonlinear matrix differential equations bounded on the half-line.

Consider a nonlinear operator equation

$$
\begin{equation*}
x=A(x), \tag{1}
\end{equation*}
$$

where the operator A acts from a Banach space X into a Banach space X and is defined in an open ball $S_{\delta}(0) \subset X ; 0$ is the zero element of the space $X, A(0) \neq 0$, and $\delta>0$.

Let the operator $A(x)$ be continuously differentiable in $S_{\delta}(0)$, and let the following estimate be satisfied:

$$
\begin{equation*}
\left\|A^{\prime}(x)\right\| \leq a\|x\| \quad \text { for each } \quad x \in S_{\delta}(0) \tag{2}
\end{equation*}
$$

where $a(s) \geq 0$ is a function of the class $C[0, \delta)$ nondecreasing on the interval $[0, \delta)$.
We adopt the notation

$$
b=\|A(0)\|, \quad \varphi(\rho, b)=\int_{0}^{\rho}(a(s)-1) d s+b
$$

where $\rho \in[0, \delta)$.
Theorem. Let the equation $a(\rho)-1=0$ have a solution ρ^{*} in the interval $(0, \delta)$, and let the inequality

$$
\begin{equation*}
\varphi\left(\rho^{*}, b\right)<0 \tag{3}
\end{equation*}
$$

hold true. Then Eq. (1) has a unique solution x^{*} in the closed ball $\bar{S}_{\rho}(0)$ for each

$$
\begin{equation*}
\rho \in\left[\rho_{1}(b), \rho^{*}\right), \tag{4}
\end{equation*}
$$

where $\rho_{1}(b)$ is solution to the equation

$$
\begin{equation*}
\varphi(\rho, b)=0 . \tag{5}
\end{equation*}
$$

The solution x^{*} can be obtained as the limit of a sequence $\left(x_{k}\right)$ whose terms are determined by the classical successive approximation method.

Proof. To prove the theorem, we apply a constructive method (see [1-5]) based on the Caccioppoli-Banach contraction mapping principle [6, p. 605].

Based on the Lagrange formula (see, e.g., [7, p. 375]), we have the equality

$$
\begin{equation*}
A(x)=A(0)+\int_{0}^{1} A^{\prime}(\mu x) d \mu x \tag{6}
\end{equation*}
$$

Then Eq. (1) takes the form

$$
x=\int_{0}^{1} A^{\prime}(\mu x) d \mu x+A(0) .
$$

Take an arbitrary element $x \in \bar{S}_{\rho}(0)$. Then, using (2), we find estimates in the norm in (6) on the ball $\bar{S}_{\rho}(0)$,

$$
\begin{aligned}
\|A(x)\| & \leq\left\|\int_{0}^{1} A^{\prime}(\mu x) d \mu\right\|\|x\|+\|A(0)\| \leq \int_{0}^{1}\left\|A^{\prime}(\mu x)\right\| d \mu\|x\|+b \\
& \leq \int_{0}^{1} a \mu\|x\| d \mu\|x\|+b \leq \int_{0}^{1} a \mu \rho d \mu \rho+b=\int_{0}^{\rho} a(s) d s+b .
\end{aligned}
$$

Consider Eq. (5). It follows from the relation $\varphi(0, b)>0$ and condition (3) that it has a solution in the interval $\left(0, \rho^{*}\right)$.

In the interval $\left[0, \rho^{*}\right)$, we have the inequality

$$
\frac{d \varphi(\rho, b)}{d \rho} \equiv a(\rho)-1<0
$$

Since the function $\varphi(\rho, b)$ is continuous on the interval $\left[0, \rho^{*}\right]$, it follows that Eq. (5) has a unique solution $\rho_{1}=\rho_{1}(b)$ in the interval $\left(0, \rho^{*}\right)$. It can be seen from the relation

$$
\varphi(\rho, b)=\int_{\rho_{1}}^{\rho}(a(s)-1) d s
$$

that for the values of ρ belonging to domain (4) one has the inequalities

$$
\begin{gather*}
\int_{0}^{\rho}(a(s)-1) d s+b \leq \rho \tag{7}\\
a(\rho)<1 \tag{8}
\end{gather*}
$$

which will be used to analyze the contraction property of the operator A. From Eq. (1) for any $x \in \bar{S}_{\rho}(0)$ and $y \in \bar{S}_{\rho}(0)$, we have the relation

$$
A(x)-A(y)=\int_{0}^{1} A^{\prime}(y+\mu(x-y)) d \mu(x-y)
$$

After performing estimates in the norm, we successively obtain

$$
\begin{aligned}
\|A(x)-A(y)\| & \leq \int_{0}^{1}\left\|A^{\prime}(y+\mu(x-y))\right\| d \mu\|x-y\| \\
& \leq \int_{0}^{1} a\|(1-\mu) y+\mu x\| d \mu\|x-y\| \\
& \leq \int_{0}^{1} a(1-\mu)\|y\|+\mu\|x\| d \mu\|x-y\| \leq a(\rho)\|x-y\|
\end{aligned}
$$

Based on inequality (8), we conclude that the operator A is a contraction on the ball $\bar{S}_{\rho}(0)$. To complete the proof of this part of the theorem, it suffices to refer to the Theorem in [6, p. 605].

To construct solutions of Eq. (1), we use the well-known algorithm (see, e.g., [6, p. 605])

$$
\begin{equation*}
x_{n+1}=A\left(x_{n}\right) \quad(n=0,1,2, \ldots), \tag{9}
\end{equation*}
$$

where x_{0} is an arbitrary element in $\bar{S}_{\rho}(0)$. By virtue of (7), it can readily be shown that all terms of the sequence $\left(x_{k}\right)$ belong to $\bar{S}_{\rho}(0)$.

Next, we obtain an estimate characterizing the rate of convergence of the sequence $\left(x_{k}\right)$ to the solution x^{*}. From (9), we have

$$
\begin{equation*}
x_{k+1}-x_{k}=A\left(x_{k}\right)-A\left(x_{k-1}\right) \quad(k=1,2, \ldots) . \tag{10}
\end{equation*}
$$

Based on the Lagrange formula, relation (10) can be written as follows:

$$
\begin{equation*}
x_{k+1}-x_{k}=\int_{0}^{1} A^{\prime}\left(x_{k-1}+\mu\left(x_{k}-x_{k-1}\right)\right) d \mu\left(x_{k}-x_{k-1}\right) \tag{11}
\end{equation*}
$$

In (11), we perform estimates with respect to the norm

$$
\begin{aligned}
\left\|x_{k+1}-x_{k}\right\| & \leq \int_{0}^{1}\left\|A^{\prime}\left(x_{k-1}+\mu\left(x_{k}-x_{k-1}\right)\right)\right\| d \mu\left\|x_{k}-x_{k-1}\right\| \\
& \leq \int_{0}^{1} a\left\|(1-\mu) x_{k-1}+\mu x_{k}\right\| d \mu\left\|x_{k}-x_{k-1}\right\| \\
& \leq \int_{0}^{1} a\left((1-\mu)\left\|x_{k-1}\right\|+\mu\left\|x_{k}\right\|\right) d \mu\left\|x_{k}-x_{k-1}\right\| \leq a(\rho)\left\|x_{k}-x_{k-1}\right\| .
\end{aligned}
$$

Thus, we have obtained the estimate

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}\right\| \leq a(\rho)\left\|x_{k}-x_{k-1}\right\| \quad(k=1,2, \ldots) \tag{12}
\end{equation*}
$$

Using (12), on the basis of (7), (8) one can readily prove that the sequence $\left(x_{k}\right)$ converges to an element $x^{*} \in \bar{S}_{\rho}(0)$, with the following estimate holding true:

$$
\begin{equation*}
\left\|x^{*}-x_{k}\right\| \leq \frac{a^{k}}{1-a}\left\|x_{1}-x_{0}\right\| \quad(k=1,2, \ldots) \tag{13}
\end{equation*}
$$

Remark 1. Obviously, in the proved theorem, instead of the quantity $b=\|A(0)\|$, we can take an estimate for $\|A(0)\|$.

Remark 2. The equation $\alpha(\rho)-1=0$ has a unique solution in the interval $(0, \delta)$ under the condition $\alpha\left(s_{0}\right)<1<\alpha\left(s_{1}\right)$, where $0 \leq s_{0}<s_{1}<\delta$.

Using the Theorem, we study the question of the existence of solutions of the matrix Riccati equation bounded on the half-line $\mathbb{R}_{+} \equiv[0, \infty)$ (see $[8 ; 9$, p. $165 ; 10$, p. 158], etc.),

$$
\begin{equation*}
\frac{d Y}{d t}=Y P(t) Y+Q(t) \tag{14}
\end{equation*}
$$

where $P(t)$ and $Q(t)$ are continuous $n \times n$ matrices bounded in \mathbb{R}_{+}and satisfying the conditions

$$
\tilde{p} \equiv \int_{0}^{\infty}\|P(\tau)\| d \tau<\infty, \quad \tilde{q} \equiv \sup _{t \geq 0}\|\tilde{Q}(t)\|<\infty
$$

here $\tilde{Q}(t)=\int_{0}^{t} Q(\tau) d \tau$.

Set

$$
\|Y\|_{C} \equiv \sup _{t \geq 0}\|Y(t)\|
$$

where $C=\mathfrak{B}(n)$ is a finite-dimensional Banach algebra of matrix functions continuous and bounded on the half-line and $\|\cdot\|$ is a certain matrix norm, for example, any of the norms given in [11, p. 21].

For Eq. (14), we will study the Cauchy problem with the condition

$$
\begin{equation*}
Y(0)=\Lambda \tag{15}
\end{equation*}
$$

Instead of problem $(14),(15)$ we consider the equivalent integral equation

$$
\begin{equation*}
Y(t)=\Lambda+\int_{0}^{t} Y(\tau) P(\tau) Y(\tau) d \tau+\tilde{Q}(t) \tag{16}
\end{equation*}
$$

We investigate the solvability of this equation in $\mathfrak{B}(n)$; the convergence of a sequence means uniform convergence on the half-line \mathbb{R}_{+}.

For every $n \times n$ matrix $X(t)$ belonging to the ball $\|X\|_{C} \leq \rho$, we have

$$
\left\|\int_{0}^{t} X(\tau) P(\tau) X(\tau) d \tau+\Lambda+\tilde{Q}(t)\right\|_{C} \leq \tilde{p} \rho^{2}+\varepsilon+\tilde{q}
$$

where $\varepsilon=\|\Lambda\|$.
In a similar manner, we obtain the estimate

$$
\left\|\int_{0}^{t}(X(\tau) P(\tau) X(\tau)-Y(\tau) P(\tau) Y(\tau)) d \tau\right\|_{C} \leq 2 \tilde{p} \rho\|X-Y\|_{C}
$$

where $\|X\|_{C} \leq \rho$ and $\|Y\|_{C} \leq \rho$.
As applied to Eq. (16), we have

$$
\begin{aligned}
a(\rho) & =2 \tilde{p} \rho \\
\varphi(\rho, b) & =\tilde{p} \rho^{2}-\rho+b
\end{aligned}
$$

where $b=\varepsilon+\tilde{q}$.
Since $\rho^{*}=1 /(2 \tilde{p})$, condition (3) takes the form

$$
\varphi\left(\rho^{*}, b\right)=b-\frac{1}{4 \tilde{p}}<0
$$

It follows from the theorem proved that under the condition

$$
\tilde{q}-\frac{1}{4 \tilde{p}}<0
$$

the problem of solutions of Eq. (14) bounded on the half-line is uniquely solvable for initial values belonging to the domain

$$
\|\Lambda\|<\frac{1}{4 \tilde{p}}-\tilde{q}
$$

In this case,

$$
\rho_{1}(\varepsilon) \leq \rho<\frac{1}{4 \tilde{p}}
$$

here

$$
\rho_{1}(\varepsilon)=\frac{1-\sqrt{1-4 \tilde{p}(\varepsilon+\tilde{q})}}{2 \tilde{p}}>\frac{1-\sqrt{1-4 \tilde{p} \tilde{q}}}{2 \tilde{p}}=\rho_{1}(0) .
$$

To construct a solution of Eq. (16), one can use the algorithm (9) together with the estimate (13).
Remark 3. The above theorem is stated and proved in terms of the functions $a(s)$ and $\varphi(\rho, b)$; this is its constructiveness, which is illustrated by the example of the Riccati equation (and earlier in [1-5]), for which coefficient sufficient conditions for the existence of solutions bounded on the half-line \mathbb{R}_{+}are obtained.

REFERENCES

1. Laptinskii, V.N., On solutions of the Riccati equation bounded on the half-line, Vestsi Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk, 1995, no. 2, pp. 12-16.
2. Laptinskii, V.N., On solutions to nonlinear differential equations bounded on the half-line, Differ. Equations, 1996, vol. 32, no. 1, pp. 137-139.
3. Laptinskii, V.N., On solutions to nonlinear differential systems bounded on the half-line, Differ. Equations, 1997, vol. 33, no. 2, pp. 275-277.
4. Laptinskii, V.N., On the problem of solutions of nonlinear differential systems bounded on the half-line, Vestsi Nats. Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk, 2008, no. 1, pp. 13-15.
5. Laptinskii, V.N., On the asymptotic behavior of solutions of nonlinear differential systems, Differ. Equations, 2008, vol. 44, no. 2, pp. 213-218.
6. Kantorovich, L.V. and Akilov, G.P., Funktsional'nyi analiz (Functional Analysis), Moscow: Nauka, 1977.
7. Trenogin, V.A., Funktsional'nyi analiz (Functional Analysis), Moscow: Nauka, 1980.
8. Zabreiko, P.P. and Laptinskii, V.N., The fixed point principle and nonlocal solvability theorems for essentially nonlinear differential equations, Dokl. Akad. Nauk Belarusi, 1997, vol. 41, no. 1, pp. 5-9.
9. Zubov, V.I., Lektsii po teorii upravleniya (Lectures on Control Theory), Moscow: Nauka, 1975.
10. Egorov, A.I., Uravneniya Rikkati (Riccati Equations), Moscow: Fizmatlit, 2001.
11. Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Theory of Stability), Moscow: Nauka, 1967.
