= SHORT COMMUNICATIONS =

To the Analysis of Nonlocal Problems of the Theory of Nonlinear Differential Systems

V. N. Laptinskii^{1*}

¹Belarusian–Russian University, Mogilev, 212000 Belarus e-mail: *lavani@tut.by Received May 26, 2022; revised September 15, 2022; accepted October 21, 2022

Abstract—We propose a constructive approach to proving the existence of solutions of operator equations in a Banach space. This approach is applied to the construction and analysis of solutions of matrix Riccati equations bounded on the half-line and not containing a linear term.

DOI: 10.1134/S0012266122110131

This work is a continuation of studies in [1-5]. It develops an operator approach to the study of solutions of nonlinear matrix differential equations bounded on the half-line.

Consider a nonlinear operator equation

$$x = A(x), \tag{1}$$

where the operator A acts from a Banach space X into a Banach space X and is defined in an open ball $S_{\delta}(0) \subset X$; 0 is the zero element of the space X, $A(0) \neq 0$, and $\delta > 0$.

Let the operator A(x) be continuously differentiable in $S_{\delta}(0)$, and let the following estimate be satisfied:

$$||A'(x)|| \le a||x|| \quad \text{for each} \quad x \in S_{\delta}(0), \tag{2}$$

where $a(s) \ge 0$ is a function of the class $C[0, \delta)$ nondecreasing on the interval $[0, \delta)$.

We adopt the notation

$$b = \left\|A(0)\right\|, \quad \varphi(\rho, b) = \int_{0}^{\rho} \left(a(s) - 1\right) ds + b$$

where $\rho \in [0, \delta)$.

Theorem. Let the equation $a(\rho) - 1 = 0$ have a solution ρ^* in the interval $(0, \delta)$, and let the inequality

$$\varphi(\rho^*, b) < 0 \tag{3}$$

hold true. Then Eq. (1) has a unique solution x^* in the closed ball $\bar{S}_{\rho}(0)$ for each

$$\rho \in [\rho_1(b), \rho^*), \tag{4}$$

where $\rho_1(b)$ is solution to the equation

$$\varphi(\rho, b) = 0. \tag{5}$$

The solution x^* can be obtained as the limit of a sequence (x_k) whose terms are determined by the classical successive approximation method.

Proof. To prove the theorem, we apply a constructive method (see [1–5]) based on the Caccioppoli–Banach contraction mapping principle [6, p. 605].

Based on the Lagrange formula (see, e.g., [7, p. 375]), we have the equality

$$A(x) = A(0) + \int_{0}^{1} A'(\mu x) \, d\mu x.$$
(6)

Then Eq. (1) takes the form

$$x = \int_{0}^{1} A'(\mu x) \, d\mu x + A(0).$$

Take an arbitrary element $x \in \bar{S}_{\rho}(0)$. Then, using (2), we find estimates in the norm in (6) on the ball $\bar{S}_{\rho}(0)$,

$$\|A(x)\| \le \left\| \int_{0}^{1} A'(\mu x) \, d\mu \right\| \|x\| + \|A(0)\| \le \int_{0}^{1} \|A'(\mu x)\| \, d\mu \|x\| + b$$
$$\le \int_{0}^{1} a\mu \|x\| \, d\mu \|x\| + b \le \int_{0}^{1} a\mu\rho \, d\mu\rho + b = \int_{0}^{\rho} a(s) \, ds + b.$$

Consider Eq. (5). It follows from the relation $\varphi(0, b) > 0$ and condition (3) that it has a solution in the interval $(0, \rho^*)$.

In the interval $[0, \rho^*)$, we have the inequality

$$\frac{d\varphi(\rho, b)}{d\rho} \equiv a(\rho) - 1 < 0.$$

Since the function $\varphi(\rho, b)$ is continuous on the interval $[0, \rho^*]$, it follows that Eq. (5) has a unique solution $\rho_1 = \rho_1(b)$ in the interval $(0, \rho^*)$. It can be seen from the relation

$$\varphi(\rho, b) = \int_{\rho_1}^{\rho} \left(a(s) - 1 \right) ds$$

that for the values of ρ belonging to domain (4) one has the inequalities

$$\int_{0}^{\rho} \left(a(s) - 1 \right) ds + b \le \rho, \tag{7}$$

$$a(\rho) < 1,\tag{8}$$

which will be used to analyze the contraction property of the operator A. From Eq. (1) for any $x \in \bar{S}_{\rho}(0)$ and $y \in \bar{S}_{\rho}(0)$, we have the relation

$$A(x) - A(y) = \int_{0}^{1} A'(y + \mu(x - y)) d\mu(x - y).$$

After performing estimates in the norm, we successively obtain

$$\begin{split} \left\| A(x) - A(y) \right\| &\leq \int_{0}^{1} \left\| A' \left(y + \mu(x - y) \right) \right\| d\mu \| x - y \| \\ &\leq \int_{0}^{1} a \left\| (1 - \mu) y + \mu x \right\| d\mu \| x - y \| \\ &\leq \int_{0}^{1} a (1 - \mu) \| y \| + \mu \| x \| d\mu \| x - y \| \leq a(\rho) \| x - y \|. \end{split}$$

DIFFERENTIAL EQUATIONS Vol. 58 No. 11 2022

LAPTINSKII

Based on inequality (8), we conclude that the operator A is a contraction on the ball $\bar{S}_{\rho}(0)$. To complete the proof of this part of the theorem, it suffices to refer to the Theorem in [6, p. 605].

To construct solutions of Eq. (1), we use the well-known algorithm (see, e.g., [6, p. 605])

$$x_{n+1} = A(x_n) \quad (n = 0, 1, 2, \ldots),$$
(9)

where x_0 is an arbitrary element in $\bar{S}_{\rho}(0)$. By virtue of (7), it can readily be shown that all terms of the sequence (x_k) belong to $\bar{S}_{\rho}(0)$.

Next, we obtain an estimate characterizing the rate of convergence of the sequence (x_k) to the solution x^* . From (9), we have

$$x_{k+1} - x_k = A(x_k) - A(x_{k-1}) \quad (k = 1, 2, \ldots).$$
(10)

Based on the Lagrange formula, relation (10) can be written as follows:

$$x_{k+1} - x_k = \int_0^1 A' \left(x_{k-1} + \mu(x_k - x_{k-1}) \right) d\mu(x_k - x_{k-1}).$$
(11)

In (11), we perform estimates with respect to the norm

$$\|x_{k+1} - x_k\| \le \int_0^1 \left\| A'(x_{k-1} + \mu(x_k - x_{k-1})) \right\| d\mu \|x_k - x_{k-1}\|$$

$$\le \int_0^1 a \|(1 - \mu)x_{k-1} + \mu x_k\| d\mu \|x_k - x_{k-1}\|$$

$$\le \int_0^1 a ((1 - \mu)\|x_{k-1}\| + \mu \|x_k\|) d\mu \|x_k - x_{k-1}\| \le a(\rho)\|x_k - x_{k-1}\|.$$

Thus, we have obtained the estimate

$$||x_{k+1} - x_k|| \le a(\rho) ||x_k - x_{k-1}|| \quad (k = 1, 2, \ldots).$$
(12)

Using (12), on the basis of (7), (8) one can readily prove that the sequence (x_k) converges to an element $x^* \in \bar{S}_{\rho}(0)$, with the following estimate holding true:

$$\|x^* - x_k\| \le \frac{a^k}{1 - a} \|x_1 - x_0\| \quad (k = 1, 2, \ldots).$$
(13)

Remark 1. Obviously, in the proved theorem, instead of the quantity b = ||A(0)||, we can take an estimate for ||A(0)||.

Remark 2. The equation $\alpha(\rho) - 1 = 0$ has a unique solution in the interval $(0, \delta)$ under the condition $\alpha(s_0) < 1 < \alpha(s_1)$, where $0 \le s_0 < s_1 < \delta$.

Using the Theorem, we study the question of the existence of solutions of the matrix Riccati equation bounded on the half-line $\mathbb{R}_+ \equiv [0, \infty)$ (see [8; 9, p. 165; 10, p. 158], etc.),

$$\frac{dY}{dt} = YP(t)Y + Q(t), \tag{14}$$

where P(t) and Q(t) are continuous $n \times n$ matrices bounded in \mathbb{R}_+ and satisfying the conditions

$$\tilde{p} \equiv \int_{0}^{\infty} \left\| P(\tau) \right\| d\tau < \infty, \quad \tilde{q} \equiv \sup_{t \ge 0} \left\| \tilde{Q}(t) \right\| < \infty;$$

here $\tilde{Q}(t) = \int_0^t Q(\tau) d\tau$.

Set

$$\|Y\|_C \equiv \sup_{t\geq 0} \|Y(t)\|,$$

where $C = \mathfrak{B}(n)$ is a finite-dimensional Banach algebra of matrix functions continuous and bounded on the half-line and $\|\cdot\|$ is a certain matrix norm, for example, any of the norms given in [11, p. 21].

For Eq. (14), we will study the Cauchy problem with the condition

$$Y(0) = \Lambda. \tag{15}$$

Instead of problem (14), (15) we consider the equivalent integral equation

$$Y(t) = \Lambda + \int_{0}^{t} Y(\tau)P(\tau)Y(\tau) d\tau + \tilde{Q}(t).$$
(16)

We investigate the solvability of this equation in $\mathfrak{B}(n)$; the convergence of a sequence means uniform convergence on the half-line \mathbb{R}_+ .

For every $n \times n$ matrix X(t) belonging to the ball $||X||_C \leq \rho$, we have

$$\left\|\int_{0}^{t} X(\tau)P(\tau)X(\tau)\,d\tau + \Lambda + \tilde{Q}(t)\right\|_{C} \leq \tilde{p}\rho^{2} + \varepsilon + \tilde{q},$$

where $\varepsilon = \|\Lambda\|$.

In a similar manner, we obtain the estimate

$$\left\|\int_{0}^{t} \left(X(\tau)P(\tau)X(\tau) - Y(\tau)P(\tau)Y(\tau)\right)d\tau\right\|_{C} \le 2\tilde{p}\rho\|X - Y\|_{C},$$

where $||X||_C \leq \rho$ and $||Y||_C \leq \rho$.

As applied to Eq. (16), we have

$$\begin{split} a(\rho) &= 2\tilde{p}\rho, \\ \varphi(\rho,b) &= \tilde{p}\rho^2 - \rho + b, \end{split}$$

/ ``

where $b = \varepsilon + \tilde{q}$.

Since $\rho^* = 1/(2\tilde{p})$, condition (3) takes the form

$$\varphi(\rho^*, b) = b - \frac{1}{4\tilde{p}} < 0.$$

It follows from the theorem proved that under the condition

$$\tilde{q} - \frac{1}{4\tilde{p}} < 0$$

the problem of solutions of Eq. (14) bounded on the half-line is uniquely solvable for initial values belonging to the domain

$$\|\Lambda\| < \frac{1}{4\tilde{p}} - \tilde{q}$$

In this case,

$$\rho_1(\varepsilon) \le \rho < \frac{1}{4\tilde{p}};$$

DIFFERENTIAL EQUATIONS Vol. 58 No. 11 2022

here

$$\rho_1(\varepsilon) = \frac{1 - \sqrt{1 - 4\tilde{p}(\varepsilon + \tilde{q})}}{2\tilde{p}} > \frac{1 - \sqrt{1 - 4\tilde{p}\tilde{q}}}{2\tilde{p}} = \rho_1(0).$$

To construct a solution of Eq. (16), one can use the algorithm (9) together with the estimate (13).

Remark 3. The above theorem is stated and proved in terms of the functions a(s) and $\varphi(\rho, b)$; this is its constructiveness, which is illustrated by the example of the Riccati equation (and earlier in [1–5]), for which coefficient sufficient conditions for the existence of solutions bounded on the half-line \mathbb{R}_+ are obtained.

REFERENCES

- Laptinskii, V.N., On solutions of the Riccati equation bounded on the half-line, Vestsi Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk, 1995, no. 2, pp. 12–16.
- Laptinskii, V.N., On solutions to nonlinear differential equations bounded on the half-line, *Differ. Equa*tions, 1996, vol. 32, no. 1, pp. 137–139.
- Laptinskii, V.N., On solutions to nonlinear differential systems bounded on the half-line, *Differ. Equa*tions, 1997, vol. 33, no. 2, pp. 275–277.
- Laptinskii, V.N., On the problem of solutions of nonlinear differential systems bounded on the half-line, Vestsi Nats. Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk, 2008, no. 1, pp. 13–15.
- Laptinskii, V.N., On the asymptotic behavior of solutions of nonlinear differential systems, *Differ. Equa*tions, 2008, vol. 44, no. 2, pp. 213–218.
- 6. Kantorovich, L.V. and Akilov, G.P., Funktsional'nyi analiz (Functional Analysis), Moscow: Nauka, 1977.
- 7. Trenogin, V.A., Funktsional'nyi analiz (Functional Analysis), Moscow: Nauka, 1980.
- 8. Zabreiko, P.P. and Laptinskii, V.N., The fixed point principle and nonlocal solvability theorems for essentially nonlinear differential equations, *Dokl. Akad. Nauk Belarusi*, 1997, vol. 41, no. 1, pp. 5–9.
- 9. Zubov, V.I., Lektsii po teorii upravleniya (Lectures on Control Theory), Moscow: Nauka, 1975.
- 10. Egorov, A.I., Uravneniya Rikkati (Riccati Equations), Moscow: Fizmatlit, 2001.
- 11. Demidovich, B.P., *Lektsii po matematicheskoi teorii ustoichivosti* (Lectures on the Mathematical Theory of Stability), Moscow: Nauka, 1967.