МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Физические методы контроля»

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Методические рекомендации к практическим занятиям для студентов специальности 1-54 01 02 «Методы и приборы контроля качества и диагностики состояния объектов» очной формы обучения

УДК 621.317 ББК 31.21 Т45

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Физические методы контроля» «09» мая 2023 г., протокол № 9

Составители: канд. техн. наук, доц. В. Ф. Гоголинский; ст. преподаватель Н. В. Герасименко

Рецензент канд. техн. наук, доц. С. В. Болотов

Даны краткие теоретические сведения, примеры и решения задач, необходимые для решения типовых задач на практических занятиях по теории электрических цепей.

Учебное издание

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Ответственный за выпуск С. С. Сергеев

Корректор И. В. Голубцова

Компьютерная верстка Е. В. Ковалевская

Подписано в печать . Формат 60×84/16. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 21 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 07.03.2019. Пр-т Мира, 43, 212022, г. Могилев.

© Белорусско-Российский университет, 2023

Содержание

Введение	4
1 Практическое занятие № 1. Элементы электрических цепей и их математические модели. Эквивалентные преобразования электрических цепей	5
2 Практическое занятие № 2. Расчет электрических цепей постоянного	
гока)
3 Практическое занятие № 3. Расчет электрических цепей при синусоидальных воздействиях. Расчет цепей в режиме резонанса	C
4 Практическое занятие № 4. Расчет трехфазных и индуктивно-связанных электрических цепей	5
5 Практическое занятие № 5. Расчет переходных процессов в линейных электрических цепях классическим и операторным методами	3
6 Практическое занятие № 6. Расчет нелинейных цепей при постоянных воздействиях	9
Список литературы	1

Введение

Дисциплина «Теоретические основы электротехники» (ТОЭ) – одна из фундаментальных в системе электротехнического образования. Глубокое изучение теории необходимо при анализе и расчете электромагнитных процессов и явлений, на которых базируется принцип действия устройств современной электроэнергетики, электро- и радиотехники, вычислительной и преобразовательной техники, электроники и автоматики. Знания, полученные при изучении курса ТОЭ, используются во многих специальных дисциплинах при подготовке инженеров по различным электротехническим специальностям.

Цель методических рекомендаций – помочь студентам в освоении ключевых разделов курсов теоретических основ электротехники и теории электрических цепей.

Методические рекомендации могут быть использованы как для самостоятельной работы, так и в качестве вспомогательного материала на практических занятиях. Содержат ряд типовых задач, решение которых позволит глубже усвоить теоретический материал.

1 Практическое занятие № 1. Элементы электрических цепей и их математические модели. Эквивалентные преобразования электрических цепей

Цель занятия

- 1 Изучить основные законы электротехники.
- 2 Изучить методы преобразования электрических цепей при различных способах соединения резисторов.
- 3 Изучить основные методы расчета электрических цепей постоянного тока с одним источником питания.

1.1 Основные теоретические сведения

1 Закон Ома для пассивного участка цепи

$$I = \frac{U}{R}$$
.

2 Закон Ома для активного участка цепи

$$I = \frac{\pm \sum E \pm \sum U}{\sum R}.$$

Знак «плюс» пишется, если направление ЭДС и напряжения совпадают с направлением тока.

3 Первый закон Кирхгофа для электрического узла

$$\sum_{\kappa=1}^n I_{\kappa} = 0,$$

где I_{κ} – ток κ -й ветви, присоединенной к данному узлу, причем притекающие токи берутся со знаком «минус», вытекающие – со знаком «плюс».

4 Второй закон Кирхгофа для замкнутого контура

$$\sum_{\kappa=1}^{n} E_{\kappa} = \sum_{i=1}^{m} I_{i} R_{i} ,$$

где E_{κ} – ЭДС κ -го источника контура;

 I_i – ток, протекающий через резистор R_i .

 I_i и E_{κ} берутся со знаком «плюс», если их направления совпадают с направлением обхода контура.

5 Мощность, потребляемая активным сопротивлением,

$$P = I^2 \cdot R$$

6 Баланс мощности для электрической цепи постоянного тока

$$\sum_{i=1}^{n} E_i \cdot I_i = \sum_{i=1}^{n} I_i^2 \cdot R_i.$$

 $(E_i \cdot I_i)$ берется со знаком «плюс», если направления ЭДС и тока совпадают, и со знаком «минус», если их направления не совпадают.

7 Эквивалентные преобразования электрических цепей постоянного тока. Расчет сложных электрических цепей во многих случаях можно упростить и сделать более наглядным путем эквивалентного преобразования схемы одного вида в схему другого вида. При этом токи и напряжения в частях цепи, не затронутых преобразованием, должны остаться такими же, как и в исходной схеме. Целесообразное преобразование схемы приводит к уменьшению числа ее ветвей или узлов, а значит и числа уравнений, необходимых для расчета.

Примеры преобразования схем:

- замена нескольких последовательно или параллельно соединенных резисторов одним (рисунок 1.1);
- преобразование треугольника резисторов в эквивалентную звезду и наоборот (рисунок 1.2).

Формулы для расчета R_A , R_B , R_C (преобразование треугольника в звезду)

$$R_A = \frac{R_{AB} \cdot R_{CA}}{R_{AB} + R_{BC} + R_{CA}};$$

$$R_B = \frac{R_{AB} \cdot R_{BC}}{R_{AB} + R_{BC} + R_{CA}};$$

$$R_C = \frac{R_{CA} \cdot R_{BC}}{R_{AB} + R_{BC} + R_{CA}}. \label{eq:RC}$$

Формулы для расчета R_{A}, R_{B}, R_{C} (преобразование звезды в треугольник)

$$R_{AB} = R_A + R_B + \frac{R_A \cdot R_B}{R_C};$$

$$R_{BC} = R_B + R_C + \frac{R_B \cdot R_C}{R_A};$$

$$R_{CA} = R_C + R_A + \frac{R_C \cdot R_A}{R_R}.$$

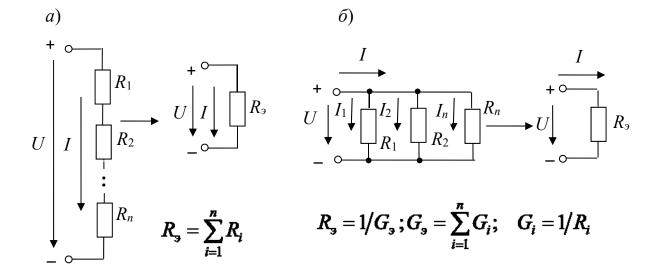


Рисунок 1.1 – Последовательное и параллельное соединение резисторов

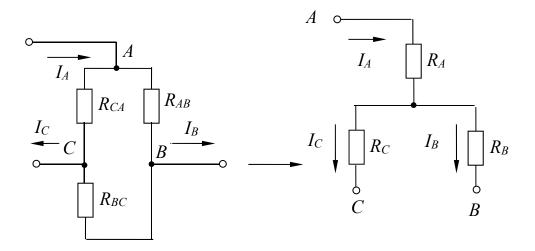


Рисунок 1.2 – Соединение резисторов треугольником и звездой

1.2 Примеры решения задач

Задача. Определить токи и напряжения на отдельных участках схемы (рисунок 1.3), если напряжение на входе $U=240\,$ B, а сопротивления резисторов $R_1=R_2=0.5\,$ Ом, $R_3=R_5=10\,$ Ом, $R_4=R_6=R_7=5\,$ Ом. Определить мощность P, потребляемую электрической цепью.

Решение

Определим эквивалентное сопротивление схемы:

$$R_{bc} = \frac{(R_6 + R_7) \cdot R_5}{R_5 + R_6 + R_7} = \frac{(5+5) \cdot 10}{5+5+10} = 5 \text{ Om},$$

т. к. резисторы R_6 и R_7 соединены последовательно друг с другом и параллельно с резистором R_5 .

$$R_{ab} = \frac{(R_{bc} + R_4) \cdot R_3}{R_{bc} + R_4 + R_3} = \frac{(5+5) \cdot 10}{5+5+10} = 5 \text{ Om},$$

т. к. резисторы R_{BC} и R_4 соединены последовательно друг с другом и параллельно с резистором R_3 .

$$R_9 = R_{ab} + R_1 + R_2 = 5 + 0.5 + 0.5 = 6$$
 Om.

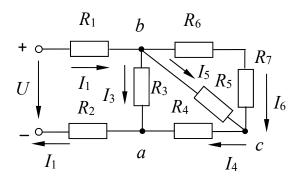


Рисунок 1.3 – Электрическая цепь постоянного тока к задаче 1

Ток I_1 определяем по закону Ома:

$$I_1 = U/R_2 = 240/6 = 40$$
 A.

Напряжение между точками a и b определяем по закону Ома:

$$U_{ab} = R_{ab} \cdot I_1 = 40 \cdot 5 = 200 \text{ B},$$

или $U_{ab} = U - (R_1 + R_2) \cdot I_1 = 200\,$ В – по второму закону Кирхгофа. Токи

$$I_3 = U_{ab} / R_3 = 200 / 10 = 20 \text{ A};$$

$$I_4 = I_1 - I_3 = 40 - 20 = 20$$
 A;

$$I_6 = I_5 = I_4 / 2 = 20 / 2 = 10$$
 A, T. K. $R_6 + R_7 = R_5$.

Напряжения

$$U_{bc} = R_5 \cdot I_5 = 10 \cdot 10 = 100 \text{ B};$$

$$U_{ca} = R_4 \cdot I_4 = 20 \cdot 5 = 100 \text{ B}.$$

Мощность, потребляемая электрической цепью,

$$P = U \cdot I_1 = 240 \cdot 40 = 9600 \text{ Bt.}$$

2 Практическое занятие № 2. Расчет электрических цепей постоянного тока

Цель занятия

Изучить основные методы расчета разветвленных цепей постоянного тока с несколькими источниками.

2.1 Основные теоретические сведения

1 Расчет сложных электрических цепей методом непосредственного применения законов Кирхгофа.

Метод непосредственного применения законов Кирхгофа является универсальным при расчетах и анализах сложных электрических цепей.

Порядок расчета по этому методу состоит в следующем:

- указываем произвольно положительные направления токов в ветвях, а также направления обхода в выбранных независимых контурах;
- записываем уравнения по первому закону Кирхгофа, согласно формуле (3); количество уравнений по первому закону Кирхгофа равно $\kappa 1$, где $\kappa -$ число узлов электрической цепи;
- записываем уравнения по второму закону Кирхгофа применительно к контуру.

Число уравнений, составляемых по второму закону Кирхгофа,

$$n-(\kappa-1)$$
,

где n — число ветвей электрической цепи.

Решая систему полученных уравнений, определяем токи ветвей.

Для проверки правильности расчета электрической цепи используют уравнение баланса мощностей.

2 Расчет сложных электрических цепей методом контурных токов.

Метод контурных токов вытекает из метода, основанного на непосредственном применении законов Кирхгофа. Уравнения по методу контурных токов получают по второму закону Кирхгофа — введением так называемых контурных токов. Количество уравнений, составленных по методу контурных токов,

$$n-(\kappa-1)$$
.

Направления контурных токов выбираются произвольно. При составлении уравнений положительными принимаются ЭДС, совпадающие с направлениями контурных токов.

2.2 Примеры решения задач

Задача 1. Рассчитать токи (рисунок 2.1).

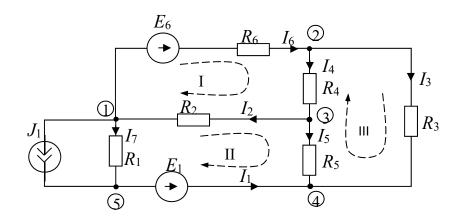


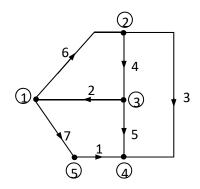
Рисунок 2.1 – Схема электрической цепи

Исходные данные:

$$R_1=2$$
 Ом; $R_2=13$ Ом; $R_3=11$ Ом; $R_4=8$ Ом; $R_5=15$ Ом; $R_6=15$ Ом; $E_1=16$ В; $E_3=0$ В; $E_6=12$ В; $J_1=2$ А; $J_2=0$ А.

2.1 Составление графа схемы.

Граф схемы (см. рисунок 2.1) приведен на рисунке 2.2. Число ветвей графа b=7. Число узлов y=5. На рисунке 2.3 изображено дерево графа.



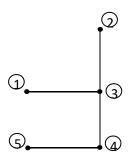


Рисунок 2.2 – Граф схемы

Рисунок 2.3 – Дерево графа

Число ветвей дерева d=4. Число ветвей связи $\kappa=3$.

Следовательно, по первому закону Кирхгофа можно составить четыре независимых уравнения, а по второму – три.

2.2 Уравнения по законам Кирхгофа.

Первый закон Кирхгофа:

$$-$$
 узел 1 $-I_2 + I_6 + I_7 = -J_1$;

$$-$$
 узел 2 $I_3 + I_4 - I_6 = 0$;

$$-$$
 узел 3 $I_2 - I_4 + I_5 = 0$;

$$-$$
 узел 5 $I_1 - I_7 = J_1$.

В матричной форме

$$[A][I] = -[A][J],$$

$$\begin{bmatrix} 0 & -1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ J_1 \end{bmatrix}.$$

Второй закон Кирхгофа:

– контур I
$$I_2R_2 + I_4R_4 + I_6R_6 = E_6$$
;

- контур II
$$-I_10 - I_2R_2 + I_5R_5 - I_7R_1 = -E_1$$
;

– контур III
$$I_3R_3 - I_4R_4 - I_5R_5 = 0$$
.

В матричной форме

$$[B][R][I] = [B][E],$$

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} R_2 & & & & & \\ & R_3 & & & & & \\ & & & R_4 & & & & \\ & & & & R_5 & & & \\ & & & & R_6 & & \\ & & & & R_1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} =$$

$$= \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} E_1 \\ 0 \\ 0 \\ 0 \\ E_6 \\ 0 \end{bmatrix}.$$

2.3 Расчет токов в ветвях электрической цепи.

Преобразуем источник тока J_1 (см. рисунок 2.1) в источник ЭДС $E'=J_1R_1=4$ В (рисунок 2.4), при этом узел 5 и ветвь 7 устраняются; в ветви 1 включены последовательно R_1 , E и E', ток $I_1=J_1+I_7$.

После преобразования схемы d=3 , $\kappa=3$, применение методов контурных токов и узловых потенциалов равноценно.

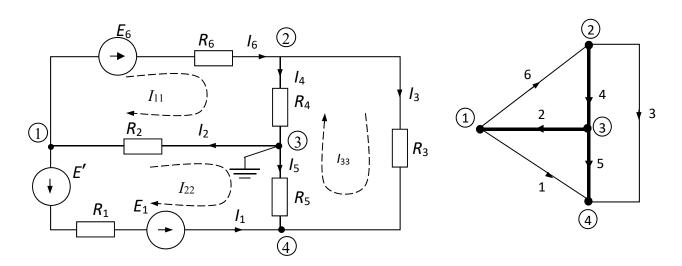


Рисунок 2.4 – Расчетная электрическая схема и ее граф

Применим метод контурных токов. Задаемся направлением контурных токов (см. рисунок 2.4) $I_{11},\ I_{22},\ I_{33}$. Запишем уравнения применительно к рассматриваемой схеме:

$$\begin{cases} I_{11}(R_2 + R_4 + R_6) - I_{22}R_2 - I_{33}R_4 = E_6; \\ -I_{11}R_2 + I_{22}(R_1 + R_2 + R_5) - I_{33}R_5 = -E_1 - E'; \\ -I_{11}R_4 - I_{22}R_5 + I_{33}(R_3 + R_4 + R_5) = 0. \end{cases}$$

Подставим исходные данные:

$$\begin{cases} 36 \cdot I_{11} - 13 \cdot I_{22} - 8 \cdot I_{33} = 12; \\ -13 \cdot I_{11} + 30 \cdot I_{22} - 15 \cdot I_{33} = -20; \\ -8 \cdot I_{11} - 15 \cdot I_{22} + 34 \cdot I_{33} = 0. \end{cases}$$

Данную систему алгебраических уравнений можно решить, например, применяя правило Крамера:

$$I_{ii} = \Delta_i / \Delta$$
,

где Δ – главный определитель системы;

 Δ_i – алгебраическое дополнение для i-го тока.

Обратимся к стандартной программе решения системы линейных алгебраических уравнений на ЭВМ и получим

$$I_{11} = -0.095 \text{ A}; I_{22} = -0.923 \text{ A}; I_{33} = -0.43 \text{ A}.$$

Можно использовать для решения системы из трёх уравнений стандартную программу для микрокалькулятора.

Имея значения контурных токов, определяем искомые токи в ветвях схемы:

$$I_1 = -I_{22} = 0.923$$
 A; $I_2 = I_{11} - I_{22} = 0.828$ A; $I_3 = I_{33} = -0.43$ A; $I_4 = I_{11} - I_{33} = 0.335$ A; $I_5 = I_{22} - I_{33} = -0.493$ A; $I_6 = I_{11} = -0.095$ A; $I_7 = I_1 - J_1 = -1.077$ A.

Знак «минус» перед токами I_3 , I_5 , I_6 и I_7 означает, что их действительное направление противоположно принятому на схеме (см. рисунок 2.1).

Если использовать для расчета метод узловых напряжений, то необходимо выбрать базисный узел, например узел 3, и принять $U_3 = U_0 = 0$, затем составить на основании (1.16) систему для определения узловых напряжений:

$$\begin{cases} U_{10}(g_1+g_2+g_6)-U_{20}g_6-U_{40}g_1=-(E'+E_1)g_1-E_6g_6;\\ -U_{10}g_6+U_{20}(g_6+g_3+g_4)-U_{40}g_3=E_6g_6;\\ -U_{10}g_1-U_{20}g_3+U_{40}(g_1+g_3+g_5)=(E'+E_1)g_1. \end{cases}$$

Проводимости ветвей

$$g_1 = \frac{1}{R_1} = 0.5 \text{ Cm}; \ g_2 = \frac{1}{R_2} = 0.0771 \text{ Cm}; \ g_3 = \frac{1}{R_3} = 0.091 \text{ Cm};$$

$$g_4 = \frac{1}{R_4} = 0,125 \text{ Cm}; \ g_5 = \frac{1}{R_5} = 0,0671 \text{ Cm}; \ g_3 = \frac{1}{R_3} = 0,2 \text{ Cm}.$$

Подставляем численные значения:

$$\begin{cases} 0,0777 \cdot U_{10} - 0,2 \cdot U_{20} - 0,5 \cdot U_{40} = -12,4; \\ -0,2 \cdot U_{10} + 0,416 \cdot U_{20} - 0,091 \cdot U_{40} = 2,4; \\ -0,5 \cdot U_{10} - 0,091 \cdot U_{20} + 0,658 \cdot U_{40} = 10. \end{cases}$$

Решение системы

$$U_{10} = \frac{\Delta_1}{\Delta} = -10.5 \text{ B}; \ U_{20} = \frac{\Delta_2}{\Delta} = 2.46 \text{ B}; \ U_{40} = \frac{\Delta_3}{\Delta} = 7.49 \text{ B}.$$

Токи определяются по закону Ома (см. подраздел 1.4).

2.4 Определение тока амперметра, включенного в одну из ветвей схемы, методом активного двухполюсника.

Требуется определить ток I_2 (см. рисунок 2.1). Следует применить метод эквивалентного генератора. Тогда по формуле Тевенена

$$I_2 = \frac{U_{31xx}}{R_{ex} + R_2} \,.$$

Определим U_{31xx} в режиме холостого хода (рисунок 2.5), для чего найдем I_{6xx} и I_{4xx} .

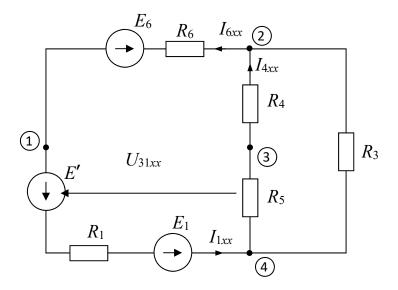


Рисунок 2.5 – Схема режима холостого хода

По закону Ома

$$I_{6xx} = I_{1xx} = \frac{E_1 + E' - E_6}{R_1 + R_6 + \frac{(R_4 + R_5) \cdot R_3}{R_3 + R_4 + R_5}} = \frac{20 - 12}{2 + 5 + 7,4} = 0,55 \text{ A};$$

$$I_{4xx} = \frac{U_{42}}{R_4 + R_5} = \frac{I_{1xx}R_{42}}{R_4 + R_5} = \frac{0,55 \cdot 7,4}{8 + 15} = 0,177 \text{ A}.$$

Напряжение холостого хода U_{31xx}

$$\phi_3 = \phi_1 + I_{6xx} R_6 + E_6 + I_{4xx} R_4 ;$$

$$U_{31xx} = \phi_3 - \phi_1 = I_{6xx} R_6 + E_6 + I_{4xx} R_4 = 0,55 \cdot 5 + 12 + 0,177 \cdot 8 = 16,6 .$$

Для определения входного сопротивления двухполюсника (рисунок 2.6) преобразуем треугольник 432 в эквивалентную звезду.



Рисунок 2.6 – Схема для определения входного сопротивления

$$R_a = \frac{R_3 R_4}{R_3 + R_4 + R_5} = \frac{11 \cdot 8}{11 + 8 + 15} = 2,58 \text{ OM};$$

$$R_b = \frac{R_3 R_5}{R_3 + R_4 + R_5} = \frac{11 \cdot 15}{34} = 5,2 \text{ OM};$$

$$R_c = \frac{R_4 R_5}{R_3 + R_4 + R_5} = \frac{8 \cdot 15}{34} = 3,53 \text{ OM};$$

$$R_{ex} = R_{31} = R_c + \frac{(R_a + R_6)(R_1 + R_b)}{R_a + R_6 + R_1 + R_b} = 3,53 + \frac{7,58 \cdot 7,2}{14,78} = 7,23 \text{ OM}.$$

Искомый ток амперметра

$$I_2 = \frac{U_{31xx}}{R_{ex} + R_2} = \frac{16.6}{7.23 + 13} = 0.8 \text{ A}.$$

Расхождение с током I_2 , рассчитанным по методу контурных токов, менее чем 3 %.

2.5 Составление баланса мощностей.

Баланс составляется для исходной схемы с источником тока (см. рисунок 2.1).

$$\sum_{i} P_{i.ucm} = \sum_{i} P_{i.np} .$$

Мощность приемников

$$\sum_{i} P_{i.np} = \sum_{i} I_{i}^{2} R_{i} = I_{2}^{2} R_{2} + I_{3}^{2} R_{3} + I_{4}^{2} R_{4} + I_{5}^{2} R_{5} + I_{6}^{2} R_{6} + I_{7}^{2} R_{1} = 0,828^{2} \cdot 13 + 0,43^{2} \cdot 11 + 0,335^{2} \cdot 8 + 0,493^{2} \cdot 15 + 0,095^{2} \cdot 15 + 1,077^{2} \cdot 2 = 17,945 \text{ Bt}.$$

Мощность источников

$$\sum P_{ucm} = E_1 I_1 + I_6 E_6 - J_1 I_7 R_1 = 16 \cdot 0,923 + 12 \cdot (-0,095) - -2 \cdot (-1,077) \cdot 2 = 17,936 \text{ Bt};$$

$$17,945 \approx 17,936$$
.

Выполнение баланса мощностей подтверждает правильность расчета токов.

2.6 Потенциальная диаграмма.

Потенциальная диаграмма (рисунок 2.8) строится для контура, содержащего источники ЭДС, и тока (рисунок 2.7).

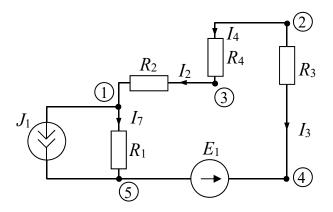


Рисунок 2.7 – К построению потенциальной диаграммы

Принимаем $\phi_5 = 0$. Определяем потенциалы остальных точек контура:

$$\phi_4 = \phi_5 + E_1 = 16 \text{ B};$$

$$\phi_2 = \phi_4 + I_3 R_3 = 16 - 0,43 \cdot 11 = 11,27 \text{ B};$$

$$\phi_3 = \phi_2 - I_4 R_4 = 11,27 - 0,335 \cdot 8 = 8,59 \text{ B};$$

$$\phi_1 = \phi_3 - I_2 R_2 = 8,59 - 0,828 \cdot 13 = -2,174 \text{ B};$$

$$\phi_5 = \phi_1 - I_7 R_1 = -2,174 - (-1,077) \cdot 2 = -0,02 \approx 0 \text{ B}.$$

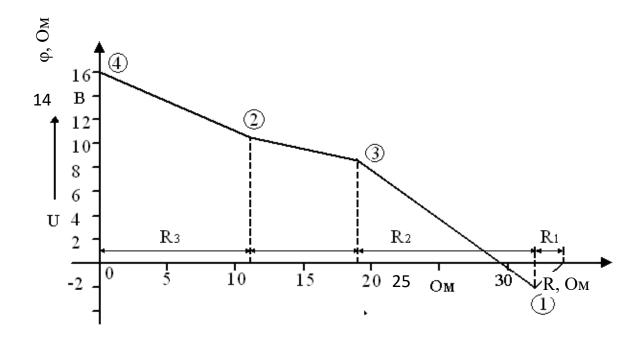


Рисунок 2.8 – Потенциальная диаграмма

Проверим правильность решения задачи, осуществив моделирование работы схемы в среде Multisim (рисунок 2.9)

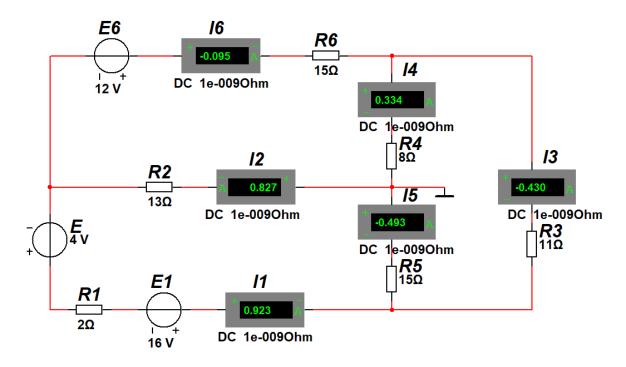
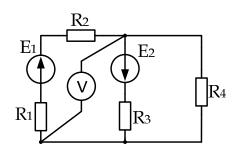


Рисунок 2.9 – Модель электрической цепи в Multisim

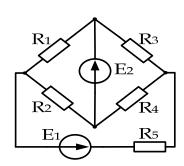
Показания измерительных приборов соответствуют расчетным значениям.

2.3 Задачи для самостоятельного решения



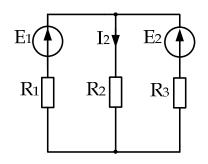
$$\it 3ada4a$$
 1. Дано: $\it R_1=10$ Ом; $\it R_2=15$ Ом; $\it R_3=40$ Ом; $\it R_4=32$ Ом; $\it E_1=90$ В; $\it E_2=10$ В.

Определить показание вольтметра, применяя метод, требующий минимум вычислений.



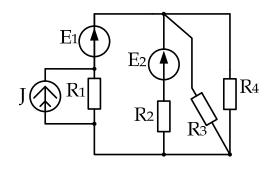
$$\it 3ada aa$$
 2. Дано: $\it R_1=7$ Ом; $\it R_2=10$ Ом; $\it R_3=5$ Ом; $\it R_4=17$ Ом; $\it R_5=4$ Ом; $\it E_1=60$ В; $\it E_2=100$ В.

Определить силу тока в каждой ветви, применяя оптимальный метод расчета.



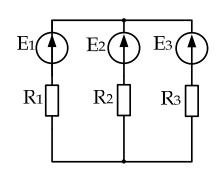
Задача 3. Дано: $R_1 = 10$ Ом; $R_2 = 10$ Ом; $R_3 = 5$ Ом; $E_1 = 40$ В; $E_2 = 20$ В.

Определить I_2 , применяя оптимальный метод расчета.



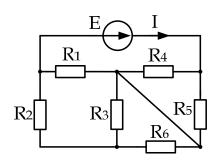
 $\it 3adaua$ 4. Дано: $\it R_1=20$ Ом; $\it R_2=10$ Ом; $\it R_3=30$ Ом; $\it R_4=30$ Ом; $\it J=0,5$ А; $\it E_1=45$ В; $\it E_2=12$ В.

Определить ток в каждой ветви, применяя оптимальный метод расчета.



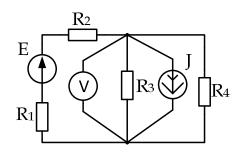
 $\it 3adaua~5.$ Дано: $\it R_1=50~{
m Om};~\it R_2=60~{
m Om}; \ \it R_3=70~{
m Om};~\it E_1=50~{
m B};~\it E_2=60~{
m B}; \ \it E_3=70~{
m B}.$

Определить токи ветвей, применяя принцип наложения и закон Ома.



3адача 6. Дано: $R_1 = 5$ Ом; $R_2 = 6$ Ом; $R_3 = 7$ Ом; $R_4 = 10$ Ом; $R_5 = 10$ Ом; $R_6 = 7$ Ом; E = 100 В.

Применить эквивалентные преобразования и найдите ток I с помощью закона Ома.



 $\it 3adaчa$ 7. Дано: $\it R_1=10$ Ом; $\it R_2=10$ Ом; $\it R_3=20$ Ом; $\it R_4=5$ Ом; $\it E=5$ В; $\it J=4$ А.

Определить показание вольтметра, применяя метод, требующий минимум вычислений.

3 Практическое занятие № 3. Расчет электрических цепей при синусоидальных воздействиях. Расчет цепей в режиме резонанса

Цель занятия

Изучить основные методы расчета электрических цепей переменного тока с применением комплексных чисел.

3.1 Основные теоретические сведения

Метод комплексных амплитуд расчета цепей переменного тока.

Сущность символического метода состоит в том, что гармонической функции тока (напряжения, ЭДС) ставится в соответствие комплексная гармоническая функция:

$$i = I_m \sin(\omega t \pm \varphi), \ \dot{I}_m = I_m \cdot e^{j(\omega t \pm \varphi)}.$$

Для t=0 комплексное амплитудное значение тока $\dot{I}_m=I_m\cdot e^{j(\pm \phi)},$ а комплекс действующего значения тока $\dot{I}=\frac{I_m}{\sqrt{2}}\cdot e^{j(\pm \phi)},$ аналогично

$$\dot{U} = \frac{U_m}{\sqrt{2}} \cdot e^{j(\pm \varphi)}.$$

Закон Ома в символической форме имеет вид

$$\dot{I} = \frac{\dot{U}}{Z}$$

где Z – комплекс полного сопротивления цепи.

При последовательном соединении элементов R, L, C

$$\underline{Z} = R + jX_L - jX_C = R + j(X_L - X_C) = z \cdot e^{j\varphi},$$

где
$$z = \sqrt{R^2 + (X_L - X_C)^2}$$
; $\phi = \arctan \operatorname{tg} \frac{X_L - X_C}{R}$.

При параллельном соединении элементов

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \dots + \frac{1}{Z_i}.$$

3.2 Примеры решения задач

Задача 1. Катушка с активным сопротивлением $R = 6\,\mathrm{Om}$ и индуктивностью $L = 25,5\,\mathrm{m\Gamma}$ н соединена последовательно с конденсатором, емкость которого $C = 1590\,\mathrm{mk\Phi}$.

Определить ток, напряжения на катушке и конденсаторе, мощности катушки, конденсатора и всей цепи. Построить векторную диаграмму напряжений, если напряжение на входе схемы (рисунок 3.1, a) $U = 127\,$ В и частота $f = 50\,$ Гц. Осуществить моделирование работы схемы в среде Multisim.

 $X_L = 2 \cdot \pi \cdot f \cdot L = 2 \cdot 3.14 \cdot 50 \cdot 25.5 \cdot 10^{-3} = 8$ Om;

Решение

Реактивные сопротивления элементов цепи

$$X_{C} = \frac{1}{2 \cdot \pi \cdot f \cdot C} = \frac{1}{2 \cdot 3,14 \cdot 50 \cdot 1590 \cdot 10^{-6}} = 2 \text{ OM.}$$

$$i \qquad \qquad 0$$

$$i \qquad \qquad \dot{U}_{C} = -j \dot{I} X_{C} \qquad \dot{U}_{L} = j \dot{I} X_{L}$$

$$\dot{U}_{L} \qquad \dot{U}_{L} \qquad \dot{U}_{L} = i \cdot R$$

Рисунок 3.1 – Электрическая цепь переменного тока к задаче 2

Комплекс полного сопротивления цепи

$$\underline{Z} = R + jX_L - jX_C = R + j(X_L - X_C) = R + jX = 6 + j6 =$$

$$= \sqrt{6^2 + 6^2} e^{j\left(\operatorname{arctg}\frac{6}{6}\right)^{\circ}} = 8,5 e^{j45^{\circ}} \text{ Om.}$$

Комплексное значение полного сопротивления катушки

$$\underline{Z}_k = R + jX_L = 6 + j8 = \sqrt{6^2 + 8^2} e^{j\left(arctg\frac{8}{6}\right)^{\circ}} 10 e^{j53^{\circ}}$$
 Om.

Комплексные значения напряжения и тока

$$\dot{U} = 127 \text{ B}$$
:

$$\dot{I} = \frac{U}{Z} = \frac{127}{8.5 \cdot e^{j45^{\circ}}} = 14.9 \cdot e^{-j45^{\circ}} = 14.9 \cdot \cos(-45^{\circ}) + j \cdot \sin(-45)^{\circ} = 10.5 - j10.5 \text{ A}.$$

Комплексные действующие значения напряжений:

на конденсаторе

$$\dot{U}_C = \underline{Z}_C \cdot \dot{I} = -j \cdot X_C \cdot \dot{I} = -j2 \cdot 14,9 \cdot e^{-j45^\circ} = 29,8 \cdot e^{-j135^\circ} = -21,1-j21,1 \text{ B};$$
 — на катушке

$$\dot{U}_k = \underline{Z}_k \cdot \dot{I} = 10 \cdot e^{j53^\circ} \cdot 14,9 \cdot e^{-j45^\circ} = 149 \cdot e^{j8^\circ} = 147,5 + j20,7 \text{ B}.$$

Комплексное значение полной мощности

$$\tilde{S} = \dot{U} \cdot I^* = 127 \cdot 14, 9 \cdot e^{j45^\circ} = 1892 \cdot e^{j45^\circ} = 1338 + j1338 \text{ B} \cdot \text{A},$$

где I^* — комплексно-сопряженное значение тока.

Выделяя вещественную и мнимую часть, находим, что активная мощность цепи составляет $P = 1338\,$ Bt, а реактивная – $Q = 1338\,$ BAp.

Реактивная мощность конденсатора

$$Q_C = I^2 \cdot X_C = 14,9^2 \cdot 2 = 444$$
 BAp.

Комплекс полной мощности катушки

$$\tilde{S} = \dot{U}_k \cdot I^* = 149 \cdot 14, 9 \cdot e^{j8^{\circ}} \cdot e^{j45^{\circ}} = 2220 \cdot e^{j53^{\circ}} = 1336 + j1773 \,\mathrm{B}\cdot\mathrm{A}.$$

Векторная диаграмма приведена на рисунке 3.1, δ .

Проверим правильность решения задачи, осуществив моделирование её работы в среде Multisim.

В качестве источника питания для цепи на рисунке 3.1 можно использовать источник AC Power из группы Sources, установив действующее значение напряжения RMS и частоту F. Измерительные приборы перевести в режим AC. При этом они осуществляют индикацию действующих значений токов и напряжений. Результаты моделирования соответствуют расчётным значениям с небольшой погрешностью.

Измерение мощностей P, S и Q можно провести с помощью ваттметра, который в Multisim, кроме активной мощности, измеряет коэффициент мощности $\cos \phi = \frac{P}{S}$.

В соответствии с показаниями ваттметра можно записать

$$P = 1343 \, \mathrm{BT}; \, \cos \phi = 0,707;$$
 $\phi = 45^{\circ}$ (напряжение опережает ток по фазе);

$$S = \frac{P}{\cos \varphi} = 1900 \text{ B} \cdot \text{A};$$

 $Q = \sqrt{S^2 - P^2} = 1343 \; \mathrm{BAp}, \;$ что с небольшой погрешностью соответствует расчётным значениям.

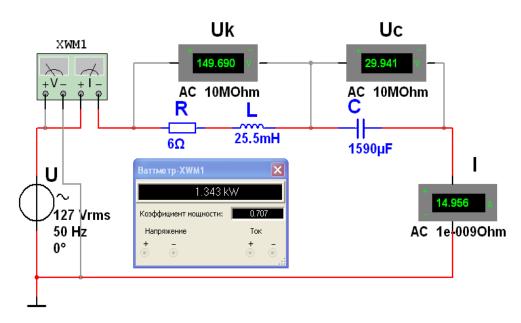


Рисунок 3.2 – Модель электрической цепи переменного тока в среде Multisim к задаче 2

Задача 2. Определить токи в электрической цепи (рисунок 3.3), если напряжение на входе $U_{ab}=120\,$ В, а значение сопротивлений $X_{L0}=4\,$ Ом, $R_1=6\,$ Ом, $X_{L1}=8\,$ Ом, $X_C=5\,$ Ом, $R_2=5\,$ Ом. Осуществить моделирование работы схемы в среде Multisim.

Решение

Входное комплексное сопротивление цепи

$$\underline{Z}_{ab} = \underline{Z}_0 + \underline{Z}_{cd} = \underline{Z}_0 + \frac{\underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2} = jX_{L0} + \frac{(R_1 + jX_{L1}) \cdot (R_2 - jX_C)}{R_1 + jX_{L1} + R_2 - jX_C} =$$

$$= j4 + \frac{(6 + j8) \cdot (5 - j5)}{6 + j8 + 5 - j5} = 6,15 + j3,23 \text{ Om.}$$

Общий ток цепи

$$\dot{I} = \frac{U_{ab}}{Z_{ab}} = \frac{120}{6,15 + j3,23} = 15,39 - j8,08 = 17,4 \cdot e^{-j27,7^{\circ}} \text{ A}.$$

Комплексное напряжение на зажимах с по второму закону Кирхгофа

$$\dot{U}_{cd} = \dot{U}_{ab} - \dot{U}_{ac} = 120 - j4 \cdot (15,39 - j8,08) = 87,78 - j61,5 = 107,2 \cdot e^{-j35^{\circ}}$$
 B.

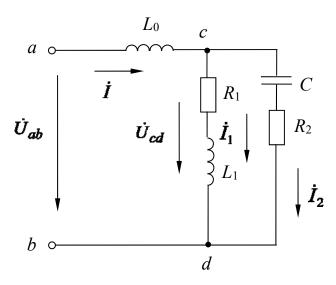


Рисунок 3.3 — Электрическая цепь переменного тока с параллельным соединением элементов к задаче 2

Токи в ветвях

$$\dot{I}_1 = \frac{\dot{U}_{cd}}{Z_1} = \frac{87.8 - j61.5}{6 + j8} = 0.34 - j10.7 = 10.71 \cdot e^{-j88.2^{\circ}} \text{A};$$

$$\dot{I}_2 = \frac{\dot{U}_{cd}}{Z_2} = \frac{87.8 - j61.5}{5 - j5} = 14.92 + j2.64 = 15.2 \cdot e^{j10^{\circ}} \text{ A}.$$

Комплексная полная мощность всей цепи

$$\tilde{S} = \dot{U}_{ab} \cdot I^* = 120 \cdot (15,39 + j8,08) = 1846 + j970 = 2085 \cdot e^{j27,7^{\circ}} \text{ B·A};$$

$$S = \sqrt{1846^2 + 970^2} = 2085 \text{ B·A},$$

откуда P = 1846 Вт; Q = 970 ВАр.

Для проверки баланса мощностей подсчитываем активные и реактивные мощности отдельных ветвей цепи:

$$\widetilde{S}_1 = \dot{U}_{cd} \cdot \overset{*}{I}_1 = (87.8 - j61.5) \cdot (0.34 + j10.7) = 689 + j919 \text{ B} \cdot \text{A},$$

откуда $P_1 = 689$ Вт; $Q_1 = 919$ ВАр;

$$\widetilde{S}_2 = \dot{U}_{cd} \cdot \overset{*}{I}_2 = (87.8 - j61.5) \cdot (14.92 + j2.64) = 1148 + j1148 \text{ B} \cdot \text{A},$$

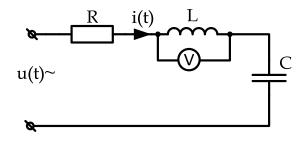
откуда $P_2 = 1148$ Вт; $Q_2 = -1148$ ВАр.

Активная и реактивная мощности всей цепи соответственно

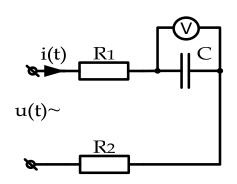
$$P_1 + P_2 = 689 + 1148 = 1837$$
 BT;

$$Q_1 + Q_2 + Q_0 = Q_1 + Q_2 + X_{L0} \cdot I^2 = 919 - 1148 + 1206 = 977$$
 BAp.

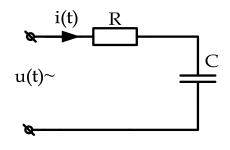
3.3 Задачи для самостоятельного решения

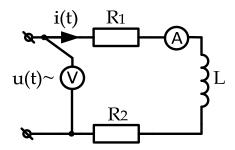


Задача 1. Вольтметр показал значение $U_v = 100$ В. Определить комплексные значения тока, напряжения на конденсаторе, резисторе и реактивную мощность, если R = 20 Ом, $X_L = 20$ Ом, $X_C = 40$ Ом.



Задача 2. Вольтметр показал значение $U_v = 100$ В. Определить ток в цепи, напряжение на входе, активную, реактивную и полную мощности, если $R_1 = 10$ Ом, $R_2 = 10$ Ом, $X_C = 20$ Ом.





Задача 3. В последовательной цепи R, C переменного синусоидального тока были измерены напряжение на входе, ток и активная мощность. Определить значения параметров R и C, если I=1 A, U=100 B, P=80 Вт, f=50 Гц.

Задача 4. Амперметр показал значение I=3 А. Определить показание вольтметра, если значения параметров цепи $R_1=20$ Ом, $R_2=10$ Ом, $X_L=30$ Ом.

Построить векторную диаграмму.

4 Практическое занятие № 4. Расчет трехфазных и индуктивно-связанных электрических цепей

Цель занятия

Изучить основные методы расчета трехфазных электрических цепей, цепей при наличии индуктивной связи при соединении нагрузки звездой и треугольником при помощи комплексных чисел.

4.1 Основные теоретические сведения

Фазные напряжения для схемы (рисунок 4.1, a) в комплексной форме определяются по заданному линейному напряжению:

$$\dot{U}_A = U_A; \quad \dot{U}_B = U_B \cdot e^{-j120^{\circ}}; \quad \dot{U}_C = U_C \cdot e^{-j240^{\circ}},$$

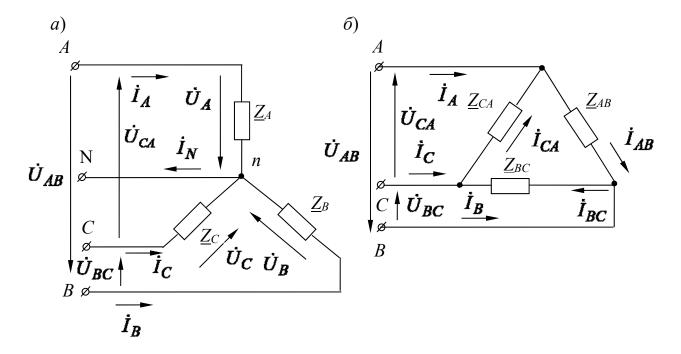
где
$$U_A = U_B = U_C = U_\phi = U_\pi / \sqrt{3}$$
.

Для схемы (рисунок 4.1, δ) фазные и линейные напряжения

$$U_{\scriptscriptstyle \Pi} = U_{\scriptscriptstyle \phi}$$
.

В комплексной форме

$$\dot{U}_{AB} = U_{AB}; \quad \dot{U}_{BC} = U_{BC} \cdot e^{-j120^{\circ}}; \quad \dot{U}_{CA} = U_{CA} \cdot e^{-j240^{\circ}}.$$



a – соединение звездой; δ – соединение треугольником

Рисунок 4.1 – Трехфазные электрические цепи

4.2 Примеры решения задач

Задача 1. К трехфазной линии электропередачи, линейные напряжения которой симметричны: $U_{AB} = U_{BC} = U_{CA} = 220\,$ В, присоединены три приемника энергии по схеме треугольник (рисунок 4.2). Комплексные сопротивления этих приемников $\underline{Z}_{AB} = 22\,$ Ом, $\underline{Z}_{BC} = 19 - j11\,$ Ом, $\underline{Z}_{CA} = 19 + j11\,$ Ом. Определить линейные и фазные токи в цепи и построить векторную диаграмму.

Решение

Запишем значения линейных напряжений в комплексной форме:

$$\dot{U}_{AB} = U_{AB} = 220 \text{ B}.$$

Тогда

$$\dot{U}_{BC} = U_{BC} \cdot e^{-j120^{\circ}} = 220 \cdot e^{-j120^{\circ}} = -110 - j190 \text{ B};$$

$$\dot{U}_{CA} = U_{CA} \cdot e^{-j240^{\circ}} = 220 \cdot e^{-j240^{\circ}} = -110 + j190 \text{ B}.$$

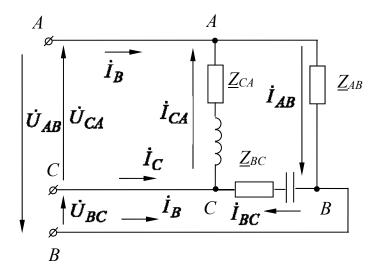


Рисунок 4.2 – Трехфазная электрическая цепь к задаче 1

На основании закона Ома определим фазные токи:

$$\dot{I}_{AB} = \dot{U}_{AB} / \underline{Z}_{AB} = 220/22 = 10 \text{ A};$$

$$\dot{I}_{BC} = \dot{U}_{BC} / \underline{Z}_{BC} = (-110 - j190)/(19 - j11) = -j10 = 10 \cdot e^{-j90^{\circ}} \text{ A};$$

$$\dot{I}_{CA} = \dot{U}_{CA} / \underline{Z}_{CA} = (-110 + j190)/(19 + j11) = j10 = 10 \cdot e^{j90^{\circ}} \text{ A}.$$

Применив первый закон Кирхгофа к точкам A, B, C, найдем линейные токи:

$$\dot{I}_{A} = \dot{I}_{AB} - \dot{I}_{CA} = 10 - j10 = 14, 1 \cdot e^{-j45^{\circ}} \text{ A};$$

$$\dot{I}_{B} = \dot{I}_{BC} - \dot{I}_{CA} = -10 - j10 = 141 \cdot e^{-j135^{\circ}} \text{ A};$$

$$\dot{I}_{C} = \dot{I}_{CA} - \dot{I}_{BC} = j20 = 20 \cdot e^{j90^{\circ}} \text{ A}.$$

Проверка:

$$\dot{I}_A + \dot{I}_B + \dot{I}_C = 0;$$

 $10 - j10 - j10 - 10 + j20 = 0.$

Проверим правильность решения задачи, осуществив моделирование её работы в среде Multisim. Сопротивления в фазах нагрузки

$$R_{ab}=22~{
m Om},\,R_{bc}=19~{
m Om},\,C_{bc}=1/\omega\cdot X_{bc}=289,5~{
m mk\Phi},\,R_{ca}=19~{
m Om},\,R_{ca}=19~{
m Om},\,L_{ca}=X_{ca}/\omega=35~{
m mGH}.$$

В качестве источника питания используем источник *Three phase wye* из группы *Sources*, установив действующее значение фазного напряжения *L-n*, *RMS* и частоту F (рисунок 4.3). Измерительные приборы переводим в режим AC. При этом они осуществляют индикацию действующих значений фазных и линейных токов I_a , I_b , I_c , I_{ab} , I_{bc} , I_{ca} . Результаты моделирования соответствуют расчётным с небольшой погрешностью.

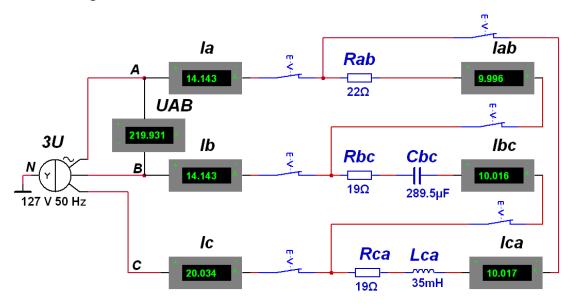


Рисунок 4.3 – Модель трехфазной электрической цепи в Multisim к задаче 1

Правильность решения задачи можно проверить с помощью Kалькулятора. При этом задаются модуль линейного напряжения U и комплексные сопротивления фаз нагрузки \underline{Z}_{ab} , \underline{Z}_{bc} , \underline{Z}_{ca} (рисунок 4.4). Программа позволяет построить векторную диаграмму токов и напряжений.

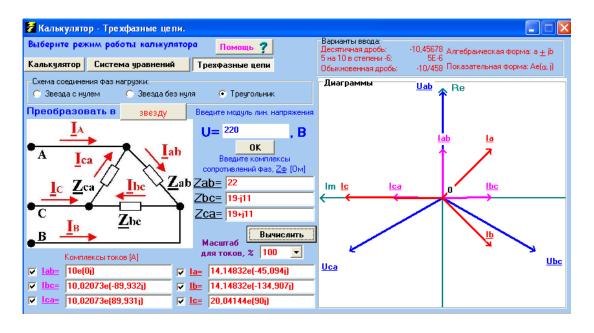


Рисунок 4.4 – Программа Калькулятор для расчёта трёхфазных цепей к задаче 1

Задача 2. Определить токи в трехфазной цепи (рисунок 4.5), если линейные напряжения на входе в цепь симметричны: $U_{AB} = U_{BC} = U_{CA} = 208\,$ В, а комплексные сопротивления фаз

$$\underline{Z}_A = 8 + j6$$
 Om; $\underline{Z}_B = 8 - j6$ Om; $\underline{Z}_C = 25$ Om.

Решение

Комплексные проводимости фаз

$$\underline{Y}_A = 1/\underline{Z}_A = 1/(R_A + jX_A) = 1/(8 + j6) = 0,08 - j0,06$$
 Cm;
 $\underline{Y}_B = 1/\underline{Z}_B = 1/(R_B + jX_B) = 1/(8 - j6) = 0,08 + j0,06$ Cm;
 $\underline{Y}_C = 1/\underline{Z}_C = 1/R_C = 1/25 = 0,04$ Cm.

Фазные напряжения генератора

$$U_A = U_B = U_C = U_{AB} / \sqrt{3} = 208 / \sqrt{3} = 120$$
.

Значения фазных напряжений в комплексной форме

$$\dot{U}_A = 120 \text{ B}; \qquad \dot{U}_B = U_B \cdot e^{-j120^\circ} = 120 \cdot e^{-j120^\circ} = -60 - j104 \text{ B};$$

$$\dot{U}_C = U_C \cdot e^{-j240^\circ} = 120 \cdot e^{-j240^\circ} = -60 + j104 \text{ B}.$$

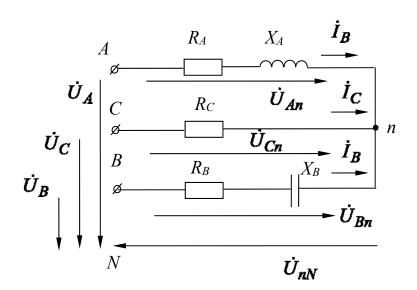


Рисунок 4.5 – Трехфазная электрическая цепь

Напряжение между нейтральными точками генератора и нагрузки

$$U_{nN} = \frac{U_A \cdot \underline{Y}_A + U_B \cdot \underline{Y}_B + U_C \cdot \underline{Y}_C}{\underline{Y}_A + \underline{Y}_B + \underline{Y}_C};$$

$$U_{nN} = \frac{120 \cdot (0.08 - j0.06) + (-60 - j104) \cdot (0.08 + j0.06) + (-60 + j104) \cdot 0.04}{0.08 - j0.06 + 0.08 + j0.06 + 0.04} = 43.2 - j74.8 = 86.3 \cdot e^{-j60^{\circ}} \text{ B}.$$

Фазные напряжения нагрузки

$$\dot{U}_{An} = \dot{U}_A - \dot{U}_{nN} = 120 - 43.2 + j74.8 = 76.8 + j74.8 = 107.2 \cdot e^{j44^{\circ}} \text{ B};$$

$$\dot{U}_{Bn} = \dot{U}_B - \dot{U}_{nN} = -60 - j104 - 43.2 + j74.8 = -103.2 - j28.2 = 107.2 \cdot e^{-j165^{\circ}} \text{B};$$

$$\dot{U}_{Cn} = \dot{U}_C - \dot{U}_{nN} = -60 + j104 - 43.2 + j74.8 = -103.2 + j178.8 = 206.4 \cdot e^{-j60^{\circ}} \text{B}.$$

Комплексные линейные токи

$$\begin{split} \dot{I}_A &= \dot{U}_{An} \cdot \underline{Y}_A = (76.8 + j74.8) \cdot (0.08 - j0.06) = 10.63 + j1.38 = 10.7 \cdot e^{j7.4^{\circ}} \text{ A}; \\ \dot{I}_B &= \dot{U}_{Bn} \cdot \underline{Y}_B = (-103.2 - j28.2) \cdot (0.08 + j0.06) = -6.5 - j8.53 = \\ &= 10.7 \cdot e^{-j127^{\circ}} \text{ A}; \\ \dot{I}_C &= \dot{U}_{Cn} \cdot \underline{Y}_C = (-103.2 + j28.2) \cdot 0.04 = -4.13 + j7.15 = 8.25 \cdot e^{-j60^{\circ}} \text{ A}. \end{split}$$

Проверка:

$$\dot{I}_A + \dot{I}_B + \dot{I}_C = 0;$$

$$10,63 + j1,38 - 6,5 - j8,53 - 4,13 + j7,15 = 0.$$

Проверим правильность решения задачи, осуществив моделирование её работы в среде Multisim. Сопротивления в фазах нагрузки

$$R_a=8~{
m Om},~L_a=X_a/\omega=19,1~{
m M}\Gamma{
m H},~R_b=8~{
m Om},~C_b=1/\omega\cdot X_b=530,8~{
m Mk}\Phi,~R_c=25~{
m Om}.$$

В качестве источника питания используем источник *Three phase wye* из группы *Sources*, установив действующее значение фазного напряжения *L-n*, *RMS* и частоту F (рисунок 4.6). Измерительные приборы переводим в режим AC. При этом они осуществляют индикацию действующих значений фазных и линейных токов I_a , I_b , I_c , напряжения между нейтральными точками генератора и нагрузки U_{nN} и фазных напряжений нагрузки U_{an} , U_{bn} , U_{cn} . Результаты моделирования соответствуют расчётным с небольшой погрешностью.

Правильность решения задачи можно проверить с помощью Kалькулятора. При этом задаются модуль линейного напряжения U и комплексные сопротивления фаз нагрузки Z_a , Z_b , Z_c (рисунок 4.7). Программа позволяет построить векторную диаграмму токов и напряжений.

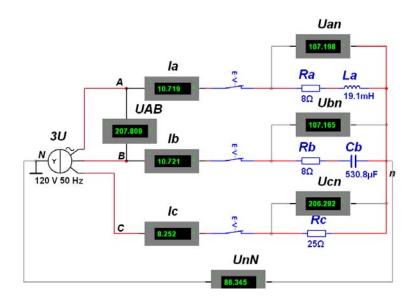


Рисунок 4.6 – Модель трехфазной электрической цепи в Multisim к задаче 2

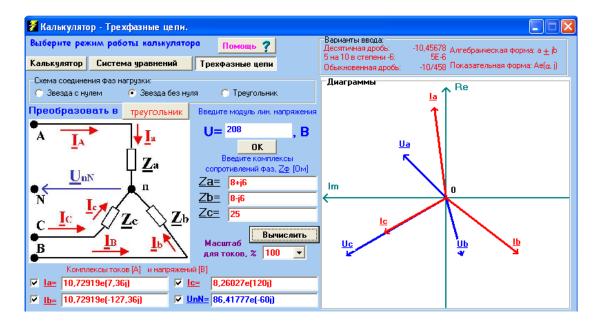
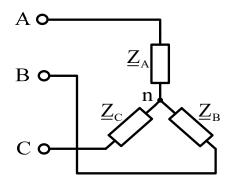


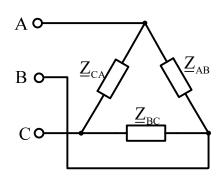
Рисунок 4.7 – Программа Калькулятор для расчёта трёхфазных цепей к задаче 2

4.3 Задачи для самостоятельного решения



Задача 1. Симметричная нагрузка соединена звездой. Определить ток в фазе b и фазное напряжение Uc, если известно линейное напряжение $\dot{U}_{AB} = 220 \cdot e^{j90^{\circ}} \, \mathrm{B}$ и импеданс $\underline{Z} = 5 \cdot e^{j30^{\circ}}$ Ом. Трехфазный генератор считать симметричным.

Построить векторную диаграмму.



 $\it 3adaчa$ 2. Симметричная нагрузка соединена треугольником. Определить линейный ток \dot{I}_B и фазный ток \dot{I}_{BC} , а также напряжение \dot{U}_{CA} , если известно линейное напряжение $\dot{U}_{AB} = 220 \cdot e^{j90^{\circ}} \, \mathrm{B}$ и импеданс $\underline{Z} = 5 \cdot e^{j30^{\circ}}$ Ом. Трехфазный генератор считать симметричным.

5 Практическое занятие № 5. Расчет переходных процессов в линейных электрических цепях классическим и операторным методами

Цель занятия

Изучить явление переходного процесса в электрической цепи, алгоритмы расчета переходных процессов классическим и операторным методами.

5.1 Краткие теоретические сведения

Расчет переходного процесса в линейной электрической цепи с сосредоточенными параметрами сводится к решению линейного дифференциального уравнения n-го порядка, полученного на основании законов Кирхгофа. Порядок дифференциального уравнения определяется количеством реактивных элементов в цепи и способом их соединения. Для всех вариантов схем настоящего расчетнографического задания n=2.

Классический метод расчета предполагает нахождение решения в виде суммы *принужденной* и *свободной* составляющих:

$$x(t) = x_{np}(t) + x_{ce}(t),$$

где $x_{np}(t)$ — частное решение неоднородного дифференциального уравнения (принужденная составляющая);

 $x_{cs}(t)$ — общее решение соответствующего однородного дифференциального уравнения (свободная составляющая).

В качестве частного решения используют значение $x_{np}(t)$, получаемое из расчета рассматриваемой цепи в установившемся режиме *после коммутации*.

Общее решение $x_{cs}(t)$ определяется корнями характеристического уравнения (p), которые могут иметь вид:

— корни действительные, разные ($p_1 \neq p_2$):

$$x_{ce}(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t},$$

где A_1 , A_2 — постоянные интегрирования;

- корни действительные, равные ($p_1 = p_2 = p$):

$$x_{ce}(t) = (A_1 + A_2 t)e^{pt};$$

— корни комплексно-сопряженные ($p_{1,2} = -\alpha \pm j\omega_0$):

$$x_{ce}(t) = Ae^{-\alpha t}\sin(\omega_0 t + v).$$

Необходимо отметить, что в линейных электрических цепях действительные корни характеристического уравнения и действительные части комплексносопряженных корней должны быть *отрицательными*.

Для получения характеристического уравнения достаточно составить выражение для входного сопротивления относительно любой ветви цепи (кроме ветви с источником тока) после коммутации в комплексной форме $Z_{\rm ex}(j\omega)$, сделать замену $j\omega$ на p и приравнять это выражение к нулю либо приравнять к нулю матрицу контурных сопротивлений или матрицу узловых проводимостей цепи. При определении $Z_{\rm ex}(p)$ все источники ЭДС в схеме закорачивают, а ветви с источниками тока размыкают.

Для определения A_1 и A_2 либо A и v (в случае комплексных корней характеристического уравнения) необходимо вычислить значение искомой величины $x(0_+)$ и ее производной $\frac{dx(t)}{dt}$ в момент времени $t=0_+$, т. е. непосредственно после коммутации, применяя законы Кирхгофа и *законы коммутации*.

Первый закон коммутации: ток через индуктивный элемент непосредственно до коммутации $i_L(0_-)$ равен току через этот элемент непосредственно после коммутации $i_L(0_+)$:

$$i_L(0_-) = i_L(0_+)$$
.

Второй закон коммутации: напряжение на емкостном элементе (конденсаторе) непосредственно до коммутации $u_C(0_-)$ равно напряжению на этом элементе непосредственно после коммутации $u_C(0_+)$:

$$u_C(0_-) = u_C(0_+)$$
.

Неизменяющиеся токи в ветвях с индуктивностью $i_L(0_-)$ и напряжения на конденсаторах $u_C(0_-)$ определяются путем расчет электрической цепи до коммутации.

Применение законов коммутации позволяет определить независимые начальные значения, т. е. $i_L(0_+)$ и $u_C(0_+)$. Чтобы определить зависимые начальные значения $u_R(0_+)$, $i_R(0_+)$, $i_C(0_+)$ и их производные, необходимо для режима после коммутации составить систему уравнений согласно законам Кирхгофа в дифференциальной форме. В полученную систему уравнений подставляют независимые начальные значения $i_L(0_+)$, $u_C(0_+)$ и, решая ее, определяют зависимые начальные значения.

Операторный метод расчета. Сущность операторного метода заключается в том, что функция x(t) действительной переменной, называемая оригиналом, заменяется функцией X(p) комплексного переменного $p = s + j\omega$, называемой изображением. Для перехода от оригинала к изображению $x(t) \rightarrow X(p)$ применяется прямое преобразование Лапласа

$$X(p) = \int_{0}^{\infty} x(t) e^{-pt} dt.$$

Напряжение *постоянного* (не изменяющегося во времени) источника, напряжение на индуктивности и конденсаторе можно записать в виде изображений следующим образом:

$$U(p) = \frac{U}{p}; \ U_L(p) = Lp \cdot I(p) - Li_L(0); \ U_C(p) = \frac{I(p)}{pC} + \frac{u_C(0)}{p},$$

где $i_L(0)$, $u_C(0)$ — независимые начальные значения.

Далее составляют эквивалентную *операторную схему замещения* электрической цепи *после коммутации*.

Эквивалентные операторные схемы отдельных элементов представлены на рисунке 5.1.

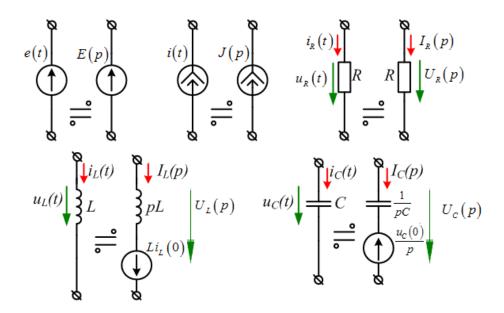


Рисунок 5.1 – Эквивалентные операторные схемы элементов цепи

Расчет изображений искомых токов и напряжений по операторной схеме выполняется на основе законов Ома и Кирхгофа или базирующихся на них методов (метод контурных токов, узловых потенциалов, эквивалентного генератора и др.).

Изображение искомой величины получается в виде отношения двух алгебраических полиномов – рациональной дроби:

$$X(p) = \frac{F_1(p)}{F_2(p)}.$$

Для решения обратной задачи (определение функции-оригинала по ее изображению) можно применить специальные таблицы или же формулу разложения.

Для схем, содержащих два независимых накопителя энергии, в зависимости от вида корней уравнения $F_2(p) = 0$, формула разложения имеет следующие формы записи:

– корни уравнения действительные, разные ($p_1 \neq p_2$):

$$x(t) = \frac{F_1(p_1)}{F_2'(p_1)} e^{p_1 t} + \frac{F_1(p_2)}{F_2'(p_2)} e^{p_2 t},$$

где
$$F_2'(p_1) = \frac{dF_2(p)}{dt}\Big|_{p=p_1}, F_2'(p_2) = \frac{dF_2(p)}{dt}\Big|_{p=p_2};$$

- в составе знаменателя имеется множитель $p(F_2(p) = pF_3(p) = 0)$, т. е. знаменатель имеет один нулевой корень:

$$x(t) = \frac{F_1(0)}{F_3(0)} + \frac{F_1(p_1)}{p_1 F_3'(p_1)} e^{p_1 t} + \frac{F_1(p_2)}{p_2 F_3'(p_2)} e^{p_2 t};$$

— корни уравнения комплексно-сопряженные ($p_{1,2} = -\alpha \pm j\omega_0$):

$$x(t) = 2\operatorname{Re}\left[\frac{F_1(p_1)}{F_2'(p_1)}e^{p_1t}\right]$$
или $x(t) = \frac{F_1(0)}{F_3(0)} + 2\operatorname{Re}\left[\frac{F_1(p_1)}{p_1F_3'(p_1)}e^{p_1t}\right];$

— корни уравнения действительные, равные ($p_1 = p_2 = p$)

$$x(t) = 2\operatorname{Re}\left[\frac{F_1(p_1)}{F_2'(p_1)}e^{p_1t}\right]$$
или $x(t) = \frac{F_1(0)}{F_3(0)} + 2\operatorname{Re}\left[\frac{F_1(p_1)}{p_1F_3'(p_1)}e^{p_1t}\right];$

$$x(t) = \left[\frac{d}{dp}F_1(p)e^{pt}\right]_{p=p_1=p_2}$$
 или $x(t) = \frac{F_1(0)}{F_3(0)} + \left[\frac{d}{dp}F_1(p)e^{pt}\right]_{p=p_1=p_2}$.

Обратное преобразование Лапласа можно также выполнить при помощи встроенных численных алгоритмов различных математических пакетов.

5.2 Примеры решения задач

Электрическая цепь, представленная на рисунке 5.2, a, была подключена к источнику ЭДС E = 50 В. Исследовать переходный процесс $i_3(t)$, применяя классический метод. Построить график.

Примечание: конденсатор считать незаряженным.

Параметры элементов: $R_1 = 2$ Ом, $R_2 = 10$ Ом, $R_3 = 4$ Ом, C = 20 мкФ.

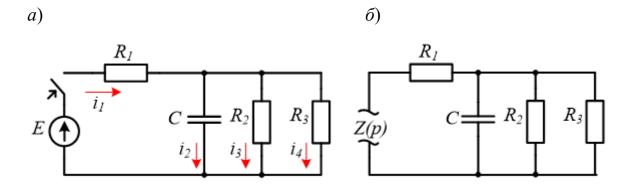


Рисунок 5.2 – Схема к задаче

Решение

Определим значение искомого тока в установившемся режиме (принужденную составляющую).

Вычислим сопротивление параллельного участка:

$$R' = \frac{R_2 \cdot R_3}{R_2 + R_2} = \frac{10 \cdot 4}{10 + 4} = \frac{40}{14} = 2,86 \text{ Om.}$$

Тогда в ветви с источником ЭДС

$$i_{1np} = \frac{E}{R_1 + R'} = \frac{50}{2 + 2,86} = 10,3 \text{ A}.$$

Значение i_{3np} определим, применяя закон Ома:

$$]u_{abnp} = i_{1np} \cdot R' = 10, 3 \cdot 2, 86 = 29, 5 \text{ B};$$

$$i_{3np} = \frac{u_{abnp}}{R_2} = \frac{29.5}{10} = 2.95 \text{ A}.$$

Для того чтобы получить характеристическое уравнение, сделаем разрыв цепи в произвольном месте и запишем выражение для комплексного входного сопротивления (импеданса) относительно точек разрыва. В полученном выражении следует всюду заменить $i\omega$ на p.

Для схемы, представленной на рисунке 5.2, δ , получим

$$Z(p) = R_1 + \frac{R' \cdot \frac{1}{pC}}{R' + \frac{1}{pC}} = 2 + \frac{2,86 \cdot \frac{10^6}{20p}}{2,86 + \frac{10^6}{20p}} = \frac{286p + 1,2 \cdot 10^7}{143p + 2,5 \cdot 10^6}.$$

Данное выражение необходимо приравнять к нулю и затем найти корни уравнения. Очевидно, что достаточно найти корни числителя.

Приравнивая числитель к нулю, получаем корень характеристического уравнения

$$286p + 1, 2 \cdot 10^7 = 0 \implies p = -42482 \text{ c}^{-1}.$$

Имеем единственный вещественный корень характеристического уравнения. Ожидаемое решение запишем в виде суммы принужденной и свободной составляющей.

$$i_3(t) = i_{3np}(t) + i_{3cB}(t) = 2,95 + A \cdot e^{-42482t}$$

5.3 Задачи для самостоятельного решения

Применяя операторный метод расчета, решить задачу 1. Сравнить результаты, полученные классическим и операторным методами.

Решить задачи, предложенные преподавателем.

6 Практическое занятие № 6. Расчет нелинейных цепей при постоянных воздействиях

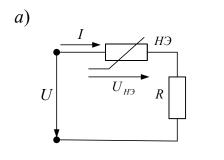
Цель занятия

Изучить графический способ расчета нелинейных цепей при постоянных воздействиях.

6.1 Примеры решения задач

Применение графического метода к расчету нелинейных электрических цепей рассмотрим на следующих задачах.

Задача 1. Для схемы (рисунок 6.1, a) дано: R=20 Ом, характеристика нелинейного элемента представлена на рисунке 5.3, δ . Определить напряжение U, при котором $U_R=U_{H}$ 9.



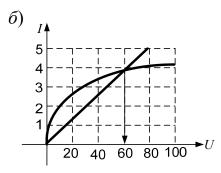


Рисунок 6.1 – Исходные данные к задаче 1

Решение

- 1 Построим характеристику $U_R(I) = I \cdot R$.
- 2 В точке пересечения вольт-амперных характеристик линейного и нелинейного элементов напряжения на этих элементов равны (элементы соединены последовательно и ток один и тот же):

$$U_R = U_{H3} = 60 \,\mathrm{B}.$$

3 В соответствии с законом Кирхгофа для схемы получим

$$U = U_R + U_{H2} = 120 \text{ B}.$$

Задача 2. Для схемы (рисунок 6.2, a) дано: $E_2 = -20\,\mathrm{B},\,U = 50\,\mathrm{B},\,$ вольтамперные характеристики нелинейных элементов представлены на рисунке 6.2, δ . Определить все токи.

Решение

Так как напряжение U является и напряжением на первом нелинейном элементе, то по BAX этого элемента определяем ток в нем: $I_1 \cong 0,6$ A.

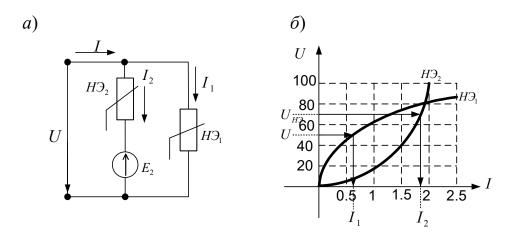


Рисунок 6.2 – Исходные данные к задаче 2

Для определения тока во второй ветви необходимо найти напряжение на втором нелинейном элементе. В соответствии с уравнением $-E_2 = U_{H\Im 2} - U$ получим $U_{H\Im 2} = U - E_2 = 70$ В.

Следовательно, $I_2 \cong 1,8$ A.

Ток в неразветвленной части схемы $I = I_1 + I_2 \cong 2,4 \,\mathrm{A}.$

6.2 Задачи для самостоятельного решения

Решить задачи, предложенные преподавателем.

Список литературы

- 1 **Рыбков, И. С.** Электротехника : учебное пособие / Е. А. Лоторейчук. Москва : РИОР ; ИНФРА-М, 2020.-160 с. : ил.
- 2 **Башарин**, **С. А.** Теоретические основы электротехники : учебник / С. А. Башарин, В. В. Федоров. 5-е изд., перераб. и доп. Москва : Академия, 2013. 384 с.
- 3 Теоретические основы электротехники. Сборник задач : учебное пособие для бакалавров / Под ред. Л. А. Бессонова. 5-е изд., испр. и доп. Москва : Юрайт, 2015.-528 с.
- 4 **Лоторейчук, Е. А.** Теоретические основы электротехники : учебник / Е. А. Лоторейчук. Москва : ФОРУМ ; ИНФРА-М, 2016. 320 с. : ил.