УДК 620.179.16 ИСПОЛЬЗОВАНИЕ МАГНИТНЫХ ЖИДКОСТЕЙ ДЛЯ ПОВЫШЕНИЯ ЧУВСТВИТЕЛЬНОСТИ КОНТРОЛЯ С ИСПОЛЬЗОВАНИЕМ ВОЛН СТОУНЛИ

А. Л. МАЙОРОВ, Г. Е. КОНОВАЛОВ, Л. А. СМОВЖ, В. В. ПАРАДИНЕЦ Государственное научное учреждение «ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ НАН Беларуси» Минск, Беларусь

Функционирование широкого измерительных спектра технологических устройств в акустике и смежных с ней областях связано с использованием различных типов поверхностных волн. С течением времени интерес к этому направлению акустики постоянно возрастает. Связано это с расширением сферы применения поверхностных акустических волн в различных приложениях. При контроле деталей с высоким затуханием интерес представляет тип поверхностных волн, распространяющихся на границе жидкого и твердого полупространств, – волн Стоунли. Анализ показывает, что данная волна существует при любом соотношении параметров граничащих сред. Энергетически волна Стоунли определяется продольной компонентой в жидкой среде. Именно этот факт обеспечивает материалов исследования высоким коэффициентом возможность c затухания.

В работе [1] проведен анализ взаимодействия волн Стоунли с неоднородностями на поверхности твердого тела. В частности, установлены зависимости механических импедансов дефектов от их глубины, радиуса раскрытия и частоты зондирующего импульса. Кроме того, импеданс дефектов зависит от заполняющей их иммерсионной жидкости. Интерес представляют дефекты, частично заполненные газом. В этом случае в устье образуется подвижная граница, реагирующая дефекта чутко возбуждающие колебания, так как упругость газа значительно меньше упругости иммерсионной среды. В этой ситуации крупные дефекты, быстро заполняемые иммерсионной средой, могут быть обнаружены визуально, а в случае ультразвукового зондирования имеют достаточный коэффициент отражения. Мелкие дефекты с незначительным устьем, например, трещины, имеют подвижную границу. Повысить эффективность взаимодействия упругой волны с дефектами возможно за счет использования в качестве иммерсионной среды магнитной жидкости. Использование управляемых намагничивающихся сред позволяет регулировать процесс взаимодействия упругих волн с приповерхностными неоднородностями за счет изменения их импеданса под воздействием наложенного магнитного поля.

В результате исследований влияния магнитного поля на коэффициент отражения установлено, что приложенное нормально к поверхности раздела твердое тело — магнитная жидкость магнитное поле не оказывает существенного влияния на коэффициент отражения вплоть до наступления гидродинамической неустойчивости. При наступлении гидродинамической неустойчивости поверхности раздела коэффициент отражения возрастает за счет внутренних переотражений в жидкости. Кроме того, при определенных

условиях меняется характер отражения самой полости (независимо от жидкости) за счет замещения ее заполнения, но это изменение имеет пороговый характер.

При воздействии тангенциального к поверхности раздела магнитного представляют результаты зависимости коэффициента интерес отражения от величины градиента поля, направленного перпендикулярно к твердое жидкость. Величина границе раздела тело магнитная коэффициента эффективного отражения зависит с одной стороны от глубины полости, с другой стороны от дополнительного затухания в магнитной жидкости. Ha рис.1 показана зависимость амплитуды принимаемого сигнала от глубины дефекта и его радиуса.

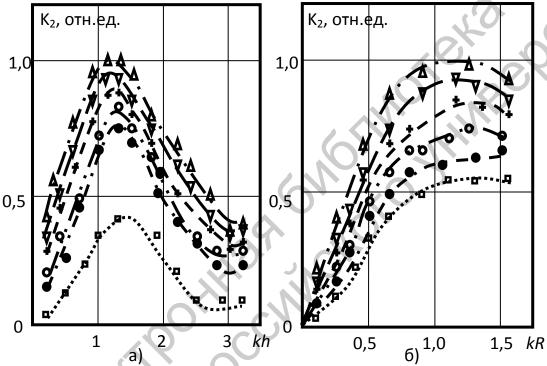


Рис. 1. Зависимость коэффициента отражения от глубины а) и от адиуса б) дефекта: Δ , ∇ , • - дефект заполнен газообразной средой; +, о, \Box - ефект заполнен жидкостью; Δ , о -приложено магнитное поле; Δ , о, •, \Box - рганическое стекло; ∇ , + - сталь

Исследованный способ контроля является перспективным для контроля адгезии покрытий и различных соединений, полученных, например, сваркой взрывом, магнитоимпульсной сваркой и другими методами.

СПИСОК ЛИТЕРАТУРЫ

1. **Прохоренко, П. П.** Обнаружение поверхностных дефектов при падении зондирующего сигнала под нулевым углом скольжения / П. П. Прохоренко, А. А. Запорожченко / /Дефектоскопия. — 1985 - № 1. - C. 44-49.