УДК 621.9

ОЦЕНКА СТОЙКОСТИ ЛЕЗВИЙНОГО ИНСТРУМЕНТА Д. Г. ШАТУРОВ

Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Могилев, Беларусь

Процесс изнашивания задней поверхности лезвийного инструмента характеризуется двумя рабочими периодами: периодом приработки со средней скоростью изнашивания V_1 и периодом установившегося износа со средней скоростью изнашивания V_2 , $(V_2 < V_1)$. Тогда средняя арифметическая скорость изнашивания равна

$$V_{us}^{cp} = \frac{1}{2}(V_1 + V_2) = \frac{1}{2} \cdot \frac{\delta_0}{T_0} \left(\frac{1}{n_0} + n_0^{0.6} \right); \tag{1}$$

где

$$n_0^{0,6} = \frac{T_0 \cdot V \cdot u_0}{1000 \cdot \delta_0 \cdot k_P} \quad , \tag{2}$$

 T_0 — период стойкости резца, мин; V—скорость резания, м/мин; u_0 —относительный размерный износ, мкм/км; δ_0 – величина оптимального износа, мкм; k_P – коэффициент перевода линейного износа задней поверхности резца в размерный износ.

Кривая средней скорости изнашивания V_{us}^{ep} от показателя степенип $_0$ имеет экстремум при n_0 =1,376, где имеет место минимальная скорость изнашивания и максимальная стойкость инструмента.

Очевидно, что при $n_0 = 1, 0$ имеем равенство скоростей изнашивания за период приработки и установившегося износа, т. е. $V_1 = V_2 = V_H$. С учетом (2) находим:

$$T_{II} = \frac{1000 \cdot \delta_0 \cdot k_P}{V_{II} \cdot u_0} \quad ; \tag{3}$$

$$V_{\Pi} = C^{1.25} \left(\frac{u_0}{1000 \cdot \delta_0 \cdot k_P} \right)^{0.25}, \tag{4}$$

где

$$C = \frac{C_V \cdot k_V}{S^V \cdot t^X} \quad , \tag{5}$$

 T_{Π} , V_{Π} – период стойкости резца и величина скорости резания при n_0 =1,0.

При условии $n_0^{onm} = 1,376$ из зависимостей (2) и (3) имеем:

$$V_{OM} \cdot T_0^{\text{max}} = T_{\Pi} \cdot V_{\Pi} \cdot \left(n_0^{\text{onm}} \right)^{0.6} = 1.211 \cdot T_{\Pi} \cdot V_{\Pi}; \tag{6}$$

$$V_{OM} \cdot T_0^{\text{max}} = T_{\Pi} \cdot V_{\Pi} \cdot \left(n_0^{onm} \right)^{0.6} = 1,211 \cdot T_{\Pi} \cdot V_{\Pi};$$

$$V_{OM} = \frac{C^{1,25}}{\left(1,211 \cdot T_{\Pi} \cdot V_{\Pi} \right)^{0.25}};$$
(6)

$$T_0^{\text{max}} = \left(\frac{C}{V_{0M}}\right)^5,\tag{8}$$

где V_{OM} , T_0^{max} – величина скорости резания, м/мин и период стойкости резца, мин, при которых показатель степени n_0 =1,376.

Таким образом, определение T_0^{max} производится согласно алгоритму.

$$C$$
 (5) \rightarrow V_{II} (4) \rightarrow T_{II} (3) \rightarrow V_{OM} (7) \rightarrow T_0^{max}

Пример. Производится получистовая обработка вала длиной l=1000 мм, диаметром d=100 мм призматическим резцом $\varphi=45^0$, $\varphi_1=10^0$, $\alpha_3=10^0$ на режимах: подача S=0.5 мм/об, глубина резания t=1.0 мм. Принятые условия: $\delta_0=500$ мкм, u_0 =5 мкм/км; k_P =0,176; C_V =350; x=0,15; y=0,35; k_V =1,0. В результате расчета получим: C=446; $V_{\Pi}=178$ м/мин; $T_{\Pi}=99$ мин; $V_{OM}=173$ м/мин; $T_{0}^{\max}=114$ мкм. методика позволяет рассчитать Разработанная режимы обработки, обеспечивающие максимальную стойкость инструмента.