Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет»

УТВЕРЖДАЮ

Вемерусско-Российского Первый проректор

университета

Ю.В. Машин

2023

Регистрационный №

УД-200301/5,1,0,3 /p

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

МАТЕМАТИКА

(наименование дисциплины)

Направление подготовки 20.03.01 Техносферная безопасность Направленность (профиль) Техносферная безопасность (общий профиль) Квалификация Бакалавр

	Форма обучения
	Очная
Курс	1
Семестр	1,2
Лекции, часы	84
Практические занятия, часы	100
Экзамен, семестр	1,2
Контактная работа по учебным занятиям, часы	184
Самостоятельная работа, часы	284
Всего часов / зачетных единиц	468 / 13

Кафедра-разработчик программы: «Высшая математика»

(название кафедры)

Составитель: А. А. Романенко, канд. физ.-мат. наук, доцент (И.О. Фамилия, ученая степень, ученое звание)

Рабочая программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования - бакалавриат, по направлению подготовки 20.03.01 Техносферная безопасность от 25.05.2020 № 680, учебным планом рег. № 200301-2.1 от 28.04.2023.

Рассмотрена и рекомендована к утверждению кафедр	
<u>18</u> <u>09</u> 2023 г., протокол № <u>1</u> .	(название кафедры)
Зав. кафедрой В. Г. Замураев	
26 g	
Одобрена и рекомендована к утверждению Научно-м Белорусско-Российского университета	етодическим советом
Зам. председателя Научно-методического совета	<u> С. А. Сухоцкий</u>
Рецензент: Владимир Антонович Юревич, профессор кафедры то зики Белорусского Государственного университета по тор физико-математических наук, профессор (И.О. Фамилия, должность, ученая степень, ученое звание рецензента	ищевых и химических технологий, док-
Рабочая программа согласована:	
Зав. кафедрой «Техносферная безопасность и производственный дизайн» (название выпускающей кафедры)	А. В. Щур
Ведущий библиотекарь	O. E. HEYKOBCKAS
Начальник учебно-методического отдела	О. Е. Печковская

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Цель учебной дисциплины

Целью учебной дисциплины является подготовка специалиста с развитым логическим и алгоритмическим мышлением, владеющего основными методами исследования и решения математических задач и способного самостоятельно расширять математические знания и проводить постановку и математический анализ прикладных задач.

1.2 Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен знать:

- основные методы линейной и векторной алгебры, аналитической геометрии;
- основные положения математического анализа функций одной и нескольких переменных;
 - комплексные числа, элементы теории функций комплексной переменной;
 - основы теории рядов и обыкновенных дифференциальных уравнений;

уметь:

- выполнять основные алгебраические операции над матрицами, вычислять определители, решать системы линейных алгебраических уравнений;
 - выполнять алгебраические вычисления с векторами;
 - строить линии на плоскости по заданному уравнению;
 - работать с простейшими системами координат;
 - находить собственные значения и собственные векторы простейших матриц;
 - дифференцировать и интегрировать функции;
 - решать простейшие дифференциальные уравнения, интегрируемые в квадратурах;
 - разлагать функции в степенные ряды;
- применять операции дифференциального и интегрального исчислений для решения конкретных задач;

владеть:

- методами аналитического и численного решения алгебраических и обыкновенных дифференциальных уравнений;
 - навыками творческого аналитического мышления.

1.3 Место учебной дисциплины в системе подготовки студента

Дисциплина относится к Блоку 1 "Дисциплины (модули)"(обязательная часть).

Перечень учебных дисциплин, изучаемых ранее, усвоение которых необходимо для изучения данной дисциплины:

– школьный курс элементарной математики.

Перечень учебных дисциплин, которые будут опираться на данную дисциплину:

- физика;
- теоретическая механика;
- термодинамика;
- гидравлика и пневматика;
- электротехника и электроника.

Кроме того, результаты, полученные при изучении дисциплины на лекциях и практических занятиях, будут применены при прохождении практик, а также при подготовке выпускной квалификационной работы и в дальнейшей профессиональной деятельности.

1.4 Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды формируемых компетенций	Наименования формируемых компетенций
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
ОПК-1	Способен учитывать современные тенденции развития техники и технологий в области трансферной безопасности, измерительной и вычислительной техники, информационных технологий при решении типовых задач в области профессиональной деятельности, связанной с защитой окружающей среды и обеспечением безопасности человека

2 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Вклад дисциплины в формирование результатов обучения выпускника (компетенций) и достижение обобщенных результатов обучения происходит путём освоения содержания обучения и достижения частных результатов обучения, описанных в данном разделе.

2.1 Содержание учебной дисциплины

Но- мера тем	Наименование тем	Содержание	Коды формиру- емых компе- тенций
		йная алгебра и аналитическая геометрия	
1.	Матрицы и действия над ними. Определители, их свойства и вычисление	Матрицы и линейные операции над ними. Произведение матриц. Транспонирование матрицы. Определители 2-го и 3-го порядка и их свойства. Определители <i>п</i> -го порядка.	УК-1, ОПК-1
2.	Обратная матрица. Матричный метод решения СЛАУ. Пра- вило Крамера.	Обратная матрица и её построение. Теорема существования и единственности обратной матрицы. Матричный метод решения невырожденных линейных уравнений систем. Формулы Крамера.	УК-1, ОПК-1
3.	Ранг матрицы. Системы линейных уравнений. Решение произвольных СЛАУ. Метод Гаусса.	Ранг матрицы. Вычисление ранга матрицы методом окаймляющих миноров и элементарными преобразованиями. Системы линейных уравнений. Теорема Кронекера-Капелли. Решение произвольных СЛАУ методом Гаусса. Однородные системы линейных уравнений. Фундаментальная система решений.	УК-1, ОПК-1
4.	Векторы и операции над ними. Скалярное, векторное и смешанное произведения векторов	Векторы в пространстве и линейные операции над ними. Условие коллинеарности векторов. Линейная зависимость и независимость векторов. Понятие базиса. Координаты вектора. Скалярное произведение векторов, его свойства и механический смысл. Скалярное произведение в координатной форме. Условие перпендикулярности двух векторов. Ориентация тройки векторов в пространстве. Векторное произведение векторов, его свойства, геометрический и физический смысл.	УК-1, ОПК-1

	T		1
		Векторное произведение в координатной форме. Смешанное произведение векторов, его геометрический и механический смысл. Условие компланарности трёх	
5.	Прямая на плоскости	векторов. Прямая на плоскости и способы её задания. Различные виды уравнений прямой на плоскости. Угол между прямыми. Параллельность и перпендикулярность прямых. Расстояние от точки до прямой.	УК-1, ОПК-1
6.	Плоскость и прямая в пространстве. Взаимное расположение прямой и плоскости	Плоскость в пространстве и различные формы её задания. Угол между плоскостями. Расстояние от точки до плоскости. Условие параллельности и перпендикулярности плоскостей. Прямая в пространстве и способы её задания. Угол между прямыми. Взаимное расположение двух прямых в пространстве. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.	УК-1, ОПК-1
7.	Кривые второго порядка на плоскости. Поверхности второго порядка	Окружность, эллипс, гипербола, парабола, их геометрические свойства и уравнения. Приложения геометрических свойств этих кривых. Общее уравнение кривых второго порядка в декартовой системе координат. Эллипсоид, гиперболоид, параболоид, конус, цилиндр. Метод сечений в исследовании уравнений поверхностей. Общее уравнение поверхности второго порядка. Поверхности вращения. Цилиндрические и конические поверхности.	УК-1, ОПК-1
8.	Системы криволиней- ных координат. Ком- плексные числа.	Полярная система координат на плоскости. Цилиндрическая и сферическая системы координат в пространстве. Комплексные числа. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Действия над комплексными числами. Сопряжённые числа. Формулы Муавра и Эйлера.	УК-1, ОПК-1
		Введение в математический анализ	
9.	Числовая последовательность. Предел числовой последовательности	Числовая последовательность и ее предел. Свойства сходящихся последовательностей. Монотонные последовательности, критерии их сходимости.	УК-1, ОПК-1
10.	Предел функции в точке и на бесконечности. Непрерывность функции в точке.	Предел функции в точке и на бесконечности. Свойства функций, имеющих предел. Непрерывность функции в точке. Свойства функций, непрерывных в точке.	УК-1, ОПК-1
11.	Бесконечно малые и бесконечно большие функции. Замечательные пределы. Сравнение бесконечно малых функций. Эквивалентные функции.	Бесконечно малые и бесконечно большие функции. Замечательные пределы. Сравнение бесконечно малых функций. Эквивалентные функции и их применение к вычислению пределов.	УК-1, ОПК-1
12.	Непрерывность функции на множестве. Точки разрыва	Функции, непрерывные на отрезке, и их свойства. Точки разрыва функции и их классификация. Непрерывность элементарных функций. Теорема Коши о промежуточном значении. Обратная функция и её непрерывность.	УК-1, ОПК-1

	Лифференци	иальное исчисление функций одной переменной	
	Απφψυρυπαι	Производная функции, её геометрический и физиче-	
		ский смысл. Правила дифференцирования, производная	
		сложной и обратной функции. Таблица производных.	
	Производная и диф-	Дифференцирование функций, заданных параметриче-	
	ференциал функции.		
12		ски и неявно. Дифференциал функции и его геометри-	УК-1,
13.	Производные и диф-	ческий смысл. Инвариантность формы первого диффе-	ОПК-1
	ференциалы высших	ренциала. Непрерывность дифференцируемой функ-	
	порядков	ции. Производные и дифференциалы высших порядков.	
		Формула Лейбница. Формула Тейлора и различные	
		формы её остаточного члена. Основные разложения	
	0	элементарных функций по формуле Тейлора.	
	Основные теоремы о	Tanana Para Harana Vara Harana Harana N	X/I/: 1
14.	дифференцируемых	Теоремы Ролля, Лагранжа и Коши. Правило Лопиталя и	
	функциях. Правило	его применение к вычислению пределов.	ОПК-1
	Лопиталя		
	дифференци	альное исчисление функций многих переменных	
	Функции многих пе-	Понятие функции многих переменных (ФМП). Предел	
15.	ременных. Производ-	и непрерывность ФМП. Частные приращения и част-	
15.	ные и дифференциал	ные производные ФМП. Дифференциал ФМП и его	II
	ФМП	связь с частными производными. Дифференциал слож-	
		ной функции. Производная по направлению, градиент.	
	II	Частные производные высших порядков. Теорема о ра-	X/I/: 1
16.	Частные производные	венстве смешанных производных. Дифференциалы	УК-1, ОПК-1
	высших порядков		
		переменных.	
		Локальные экстремума ФМП. Необходимое и доста-	X/I/: 1
17.	Экстремумы ФМП	точные условия экстремума. Условный экстремум; ме-	УК-1, ОПК-1
		тод множителей Лагранжа. Наибольшее и наименьшее значение функции в замкнутой ограниченной области.	OHK-1
	Интограни на		
		исчисление функций одной и многих переменных Первообразная функция. Неопределённый интеграл	
18.	определённый инте-	(НИ) и его свойства. Таблица основных неопределён-	УК-1,
10.	грал	ных интегралов. Непосредственное интегрирование.	ОПК-1
	1 pasi	Подведение под знак дифференциала. Замена перемен-	
19.	Основные методы ин-	ной в неопределённом интеграле. Интегрирование по	УК-1,
1).	тегрирования	частям	ОПК-1
		Интегрирование простейших рациональных дробей.	
20.	Интегрирование ра-	Интегрирование простеиних рациональных дросси.	УК-1,
20.	циональных функций	на сумму простейших дробей.	ОПК-1
	Интегрирование три-	Интегрирование выражений, содержащих тригономет-	
21.	гонометрических	рические функции и некоторые иррациональные функ-	УК-1,
	функций	ции	ОПК-1
	T)	Понятие определённого интеграла (ОИ). Суммы Дарбу	
		и их свойства. Необходимые и достаточные условия	
	Определённый инте-	интегрируемости функций. ОИ с переменным верхним	УК-1,
22.	грал	пределом и его дифференцирование. Вычисление ОИ	ОПК-1
	-r	(формула Ньютона-Лейбница). Замена переменной в	
		ОИ и интегрирование по частям.	
	*** 6	Несобственные интегралы I и II рода. Определения,	X 7X 2 4
23.	Несобственные инте-	признаки сходимости, абсолютная и условная сходи-	УК-1,
	гралы	мость.	ОПК-1
	i	1	

		Определение двойного интеграла и его свойства. Гео-			
		метрический и физический смысл двойного интеграла.			
24	Двойные интегралы	Вычисление двойных интегралов в декартовой системе	УК-1,		
<i>2</i> 4.	двоиные интегралы		ОПК-1		
		координат. Перемена порядка интегрирования в по-			
		вторном интеграле.	X/I/ 1		
25.	Тройные интегралы	Тройной интеграл: определение, свойства и вычисле-	УК-1,		
		ние в декартовой системе координат.	ОПК-1		
		Замена переменных в двойном интеграле. Якобиан пе-	X 7 X A . 1		
26.	Замена переменных в	рехода и его геометрический смысл. Двойной интеграл	УК-1,		
	двойном интеграле	в полярной системе координат. Тройной интеграл в ци-	ОПК-1		
 		линдрической и сферической системах координат.			
	T	Криволинейный интеграл первого рода (КРИ-1), его	X 7 X A . 1		
27.	Криволинейные инте-	свойства и вычисление. Приложения КРИ-2. Связь	УК-1,		
_,,	гралы	КРИ-1 и КРИ-2. Формула Грина. Независимость КРИ-2	ОПК-1		
		от формы пути интегрирования.			
		Геометрические приложения интегралов: вычисление			
	Приложения опреде-	площадей плоских фигур; объемов тел; длин дуг; пло-			
28.	ленного, двойного,	щадей поверхностей вращения. Физические приложе-	УК-1,		
20.	тройного и криволи-	ния интегралов: вычисление работы; пути; давления;	ОПК-1		
	нейных интегралов.	массы; центра тяжести; статических моментов и мо-			
		ментов инерции			
	Обыкно	венные дифференциальные уравнения (ДУ)			
		Основные понятия теории обыкновенных дифференци-			
29.	Обыкновенные диф- ференциальные урав- нения первого поряд- ка	альных уравнений (ДУ). Общее и частное решение ДУ.			
		ДУ 1-го порядка. Задача Коши для ДУ первого поряд-	УК-1,		
		ка. Теорема существования и единственности решения	OΠK-1		
		задачи Коши для ДУ первого порядка. Поле направле-	OHK-1		
		ний, изоклины. ДУ с разделяющимися переменными и			
		их интегрирование. ДУ в полных дифференциалах.			
	Однородные, линей-	Однородная функция. Однородные ДУ и их интегриро-	УК-1,		
30.	ные ДУ 1-го порядка.	вание. Линейные ДУ 1-го порядка и методы их инте-	ук-1, ОПК-1		
	Уравнение Бернулли.	грирования. Уравнения Бернулли.	OHK-I		
		Общие понятия о ДУ высших порядков. Задача Коши.			
		Теорема существования и единственности решения за-			
2.1	ПУ/	дачи Коши. Уравнения, допускающие понижение по-	УК-1,		
31.	ДУ высших порядков	рядка. Понятие о краевых задачах. Линейные однород-	ОПК-1		
		ные ДУ и свойства их решений. Структура общего ре-			
		шения неоднородных линейных ДУ высших порядков.			
		Линейные однородные ДУ высших порядков (ЛОДУ),			
	п	свойства их решений. Линейная зависимость и незави-			
22	Линейные однород-	симость системы функций. Определитель Вронского.	УК-1,		
32.	ные ДУ высших по-	Линейные однородные ДУ высших порядков с посто-	ОПК-1		
	рядков	янными коэффициентами. Характеристическое уравне-			
		ние.			
		Линейные неоднородные ДУ высших порядков			
	- ·	(ПНЛУ) Структура общего решения Решение линей-			
	Линейные неоднород-	ных неоднородных ДУ высших порядков методом ва-	УК-1,		
33.	ные ДУ высших по-	риации произвольных постоянных. Линейные неодно-	ОПК-1		
	рядков	родные ДУ высших порядков с постоянными коэффи-			
		циентами и специальной правой частью.			
	Линейные однород-	Линейные однородные системы ДУ с постоянными ко-	УК-1,		
34.	ные системы ДУ	эффициентами. Характеристическое уравнение. Ли-	9 K-1, ОПК-1		
	пыс системы ДУ	рффицисптами. Ларактеристическое уравнение. Ли-	OTIV-I		

		нейное неоднородные системы ДУ с постоянными ко-	
		эффициентами.	
		Числовые и функциональные ряды	
35.	Числовые ряды.	Числовой ряд и его сумма. Необходимое условие сходимости числового ряда. Критерий Коши сходимости числового ряда. Гармонический ряд. Ряд Дирихле. Признаки сравнения.	УК-1, ОПК-1
36.	Признаки сходимости числовых знакопостоянных рядов	Признак Даламбера и радикальный признак Коши. Интегральный признак Коши.	УК-1, ОПК-1
37.	Знакопеременные ряды	Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость рядов.	УК-1, ОПК-1
38.	Функциональные ря- ды. Степенные ряды	Функциональные ряды, сумма ряда и область сходимости. Равномерная сходимость функциональных рядов. Критерий Коши и признак Вейерштрасса равномерной сходимости. Непрерывность суммы функционального ряда. Почленное дифференцирование и интегрирование функционального ряда. Степенные ряды. Теорема Абеля. Радиус и интервал сходимости степенного ряда. Непрерывность суммы степенного ряда. Почленное дифференцирование и интегрирование степенного ряда.	УК-1, ОПК-1
39.	Ряды Тейлора и Мак- лорена	Ряды Тейлора и Маклорена. Теорема о единственности разложения функций в ряд Тейлора. Достаточные условия представления функции рядом Тейлора. Разложение основных элементарных функций в ряд Тейлора. Применение рядов к решению дифференциальных уравнений, вычислению определенных интегралов.	УК-1, ОПК-1
		Ряд и интеграл Фурье	
40.	Тригонометрические ряды Фурье	Ортогональность тригонометрической системы функций. Тригонометрический ряд Фурье. Достаточные условия сходимости тригонометрических рядов Фурье. Ряд Фурье для функций с периодом 2π и для функций с произвольным периодом.	УК-1, ОПК-1
		ы теории функций комплексной переменной	Ţ
41.	Функции комплексной переменной. Интеграл от ФКП	Основные элементарные ФКП, их свойства. Интеграл от ФКП, его свойства. Теорема Коши и интегральная формула Коши.	УК-1, ОПК-1
		Операционное исчисление	1
42.	Преобразование Лапласа.	Преобразование Лапласа. Оригинал и изображение. Свойства преобразования Лапласа: линейность; подобие; запаздывание оригинала; смещение изображения. Восстановление оригиналов по их изображениям. Свёртка, её изображение. Применение преобразования Лапласа к решению обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами и их систем.	УК-1, ОПК-1

2.2 Учебно-методическая карта учебной дисциплины

1 семестр

	семестр		T				
№ недели	Лекции (наименование тем)	Часы	Практические (семинарские) занятия	Часы	Самостоятельная работа, часы	Форма контроля знаний	Баллы (max)
Мод	уль 1						
	1. Матрицы и действия над		Пр. р. 1. Операции над матрицами.	2	4		
1	ними. Определители, их свойства и вычисление.	2	Пр. р. 2. Вычисление определителей.	2	4		
	2. Обратная матрица. Мат-		Пр. р. 3. Обратная матрица. Мат-				
2	ричный метод решения	2	ричный метод решения СЛАУ. Пра-	2	4		
	СЛАУ. Правило Крамера.		вило Крамера.				
	3. Ранг матрицы. Системы линейных уравнений. Реше-		Пр. р. 4. Ранг матрицы. Системы	2	4		
3		2	линейных уравнений.			3И3	
	ние произвольных СЛАУ.		Пр. р. 5. Решение произвольных	2	4	ъиз № 1	15
	Метод Гаусса.		СЛАУ. Метод Гаусса.			JN⊡ I	
4	4. Векторы и операции над ними. Скалярное, векторное и смешанное произведения векторов	2	Пр. р. 6. Векторы и операции над ними.	2	4		
	1		Пр. р. 7 Скалярное, векторное и				
5	5. Прямая на плоскости	2	смешанное произведения векторов	2	4		
	• · · · · · · · · · · · · · · · · · · ·	_	Пр. р. 8. Прямая на плоскости	2	4		
	6. Плоскость и прямая в		пр. р. в. прямая на плоскости		4		
6	пространстве. Взаимное расположение прямой и плоскости	2	Пр. р. 9. Плоскость в пространстве	2	4		
			Пр. р. 10. Прямая в пространстве.				
	7. Кривые второго порядка		Взаимное расположение прямой и	2	4		
7	на плоскости. Поверхности	2	плоскости	_	-		
	второго порядка	_	Пр. р. 11. Кривые второго порядка	_	_	3И3	
			на плоскости	2	4	№ 2	15
8	8. Системы криволинейных координат. Комплексные числа.	2	Пр. р. 12. Поверхности второго порядка	2	4	ПКУ	30
Моду	уль 2						
	9. Числовая последователь-		Пр. р. 13. Системы криволинейных координат. Комплексные числа.	2	4		
9	ность. Предел числовой по- следовательности	2	Пр. р. 14. Числовая последовательность. Предел числовой последовательности.	2	4		
10	10. Предел функции в точке и на бесконечности. Непре-	2	Пр. р. 15. Предел функции в точке и на бесконечности. Непрерывность	2	4		
	рывность функции в точке.		функции в точке.				
	11. Бесконечно малые и бес-		Пр. р. 16. Бесконечно малые и бес-				
	конечно большие функции.	_	конечно большие функции. Замеча-	2	4		
11	Замечательные пределы.	2	тельные пределы.	~			
	Сравнение бесконечно малых		Пр. р. 17. Сравнение бесконечно	2	4		
	1		I I L L				

	функций. Эквивалентные функции.		малых функций. Эквивалентные функции.						
12	12. Непрерывность функции на множестве. Точки разрыва.	2	Пр. р. 18. Непрерывность функции на множестве. Точки разрыва.	2	4	3И3 № 3	15		
13	13. Производная и дифференциал функции. Производ-	2	Пр. р. 19. Производная и дифференциал функции.	2	4				
13	ные и дифференциалы высших порядков.	2	Пр. р. 20. Производная и дифференциал функции высших порядков.	2	4				
14	14. Основные теоремы о дифференцируемых функциях. Правило Лопиталя.	2	Пр. р. 21. Основные теоремы о дифференцируемых функциях. Правило Лопиталя.	2	2				
15	15. Функции многих переменных. Производные и	2	Пр. р. 22. Исследование функций с помощью производных. Построение графиков.	2	2				
13	дифференциал ФМП.	2	Пр. р. 23. Функции многих переменных. Производные и дифференциал ФМП.	2	4				
16	16. Частные производные высших порядков.	2	Пр. р. 24. Частные производные высших порядков.	2	4	3И3 № 4	15		
17	17. Экстремумы ФМП.	2	Пр. р. 25. Локальный и условный экстремумы ФМП.	2	4	ПКУ	30		
18-21					36	ПА (экза- мен)	40		
	Итого за I семестр	34		50	132		100		
	Часы / зачет. ед.		216 / 6						

2 семестр

№ недели	Лекции (наименование тем)	Часы	Практические (семинарские) занятия	Часы	ятельная работа,	Форма кон- оля знаний	Баллы (тах)
Моду	уль 1						
1	18. Первообразная и неопределённый интеграл.	2	Пр. р. 26. Первообразная и неопределённый интеграл.	2	4		
2	19. Основные методы интегрирования.	2	Пр. р. 27. Основные методы интегрирования.	2	4		
2	20. Интегрирование рациональных функций.	2	Пр. р. 28. Интегрирование рациональных функций.	2	4		
3	21. Интегрирование тригонометрических функций.	2	Пр. р. 29. Интегрирование тригоно- метрических функций.	2	4		
4	22. Определённый интеграл.	2	Пр. р. 30. Определённый интеграл.	2	4		
4	23. Несобственные интегралы	2	Пр. р. 31. Несобственные интегралы.	2	5	3И3 № 5	15
5	24. Двойные интегралы.	2	Пр. р. 32. Двойные интегралы.	2	4		
6	25. Тройные интегралы.	2	Пр. р. 33. Тройные интегралы.	2	4		
6	26. Замена переменных в двойном интеграле.	2	Пр. р. 34. Замена переменных в двойном интеграле.	2	4		
7	27. Криволинейные интегралы.	2	Пр. р. 35. Криволинейные интегралы.	2	4		

			·				
8	28. Приложения определенного, двойного, тройного и кри-	2	Пр. р. 36. Приложения определенного, двойного, тройного и криво-	2	5	3И3	15
	волинейных интегралов.		линейных интегралов.			№ 6	
	29. Обыкновенные дифферен-		Пр. р. 37. Обыкновенные диффе-				
8	циальные уравнения первого	2	ренциальные уравнения первого по-	2	5	ПКУ	30
	порядка.	_	рядка.	_			
Моду			[Proposition				l
1,104	30. Однородные, линейные		Пр. р. 38. Однородные, линейные				
9	ДУ 1-го порядка. Уравнение	2	ДУ 1-го порядка. Уравнение Бер-	2	5		
	Бернулли.	_	нулли.	_			
10	31. ДУ высших порядков.	2	Пр. р. 39. ДУ высших порядков.	2	5		
	32. Линейные однородные ДУ	_	Пр. р. 40. Линейные однородные ДУ				
10	высших порядков.	2	высших порядков.	2	5		
	33. Линейные неоднородные		Пр. р. 41. Линейные неоднородные	_	<u> </u>		
11	ДУ высших порядков.	2	ДУ высших порядков.	2	5		
1.0	34. Линейные однородные си-	_	Пр. р. 52. Линейные однородные		_	3И3	
12	стемы ДУ.	2	системы ДУ.	2	5	№ 7	15
12	35. Числовые ряды.	2	Пр. р. 43 Числовые ряды.	2	5		
	36. Признаки сходимости чис-		Пр. р. 44. Признаки сходимости				
13	ловых знакопостоянных рядов	2	числовых знакопостоянных рядов.	2	5		
14	37. Знакопеременные ряды.	2	Пр. р. 45. Знакопеременные ряды.	2	5		
	38. Функциональные ряды.		Пр. р. 46. Функциональные ряды.	2	_		
14	Степенные ряды.	2	Степенные ряды.	2	5		
1.7	39. Ряды Тейлора и Маклоре-	_	Пр. р. 47 Ряды Тейлора и Маклоре-	•	_		
15	на.	2	на.	2	5		
1.0	40. Тригонометрические ряды	_	Пр. р. 48 Тригонометрические ряды	2	_	3И3	1.7
16	Фурье.	2	Фурье.	2	5	Nº 8	15
1.0	41. Функции комплексной пе-	_	Пр. р. 49. Функции комплексной	•	_		
16	ременной. Интеграл от ФКП.	2	переменной. Интеграл от ФКП.	2	5		
1.7	1	_	Пр. р. 50. Преобразование Лапласа.	2	_	TT 63.7	20
17	42. Преобразование Лапласа.	2	Свёртка.	2	5	ПКУ	30
						ПА	
10.20					26	(эк-	40
18-20					36	за-	40
						мен)	
	Итого за II семестр	50		50	152		100
	Часы / зачет. ед.		252 / 7			•	
	Итого по дисциплине	84		100	284		
	Часы / зачет. ед.		468 / 13				

Принятые обозначения

ЗИЗ – защита индивидуального задания;

ПКУ – промежуточный контроль успеваемости.

ПА - промежуточная аттестация.

Итоговая оценка на экзамене по пятибалльной системе определяется как сумма баллов промежуточного контроля успеваемости и промежуточной аттестации (экзамена) и соответствует суммарным баллам:

Баллы	87-100	65-86	51-64	0-50
Оценка	Отлично	Хорошо	Удовлетворительно	Неудовлетворительно

При этом промежуточный контроль успеваемости оценивается до 60 баллов, а промежуточная аттестация (экзамен) оценивается до 40 баллов.

3 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении дисциплины используется модульно-рейтинговая система оценки знаний студентов. Применение форм и методов проведения занятий при изучении различных тем курса представлено в таблице.

No	Форма проведения за-	Вид аудиторных занятий		Всего часов
Π/Π	нятия	Лекции Практические занятия		Всего часов
1	Традиционные	1-6, 8-16, 18-20, 22-27, 30-38, 41	1-50	168
2	Мультимедиа	7, 17, 21, 28, 29, 39, 40, 42		16
	ИТОГО	84	100	184

4 ОЦЕНОЧНЫЕ СРЕДСТВА

Используемые оценочные средства по учебной дисциплине представлены в таблице и хранятся на кафедре.

№ п/п	Вид оценочных средств	Количество
		комплектов
1	Вопросы к экзамену	2
2	Экзаменационные билеты	2
3	Индивидуальные задания	8

5 МЕТОДИКА И КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ СТУДЕНТОВ

5.1 Уровни сформированности компетенций

№ п/п	Уровни сформи- рованности ком- петенции	Содержательное описание уровня	Результаты обучения			
	УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять систем-					
ИУК	ный подход для решения поставленных задач ИУК-1.1 Способен работать с источниками информации при изучении математических тем, применять системный подход при решении математических и прикладных задач.					
1	Пороговый уровень	Знает и понимает принципы поиска информации в различных источниках и использования найденной информации при изучении математических тем	Поиск и использование информации под руководством преподавателя при изучении стандартных математических тем и решении типовых математических задач			
2	Продвинутый уро- вень	При изучении математических тем находит необходимую информацию в учебной литературе, в справочниках и энциклопедиях, в том числе онлайн, анализирует и использует найденную информацию	Самостоятельный поиск информации в учебной и справочной литературе, её анализ и использование при изучении стандартных математических тем и решении типовых математических задач			
3	Высокий уровень	При изучении математических тем находит необходимую информацию в учебной, научной и специальной литературе, в материалах конференций, семинаров, в аналитических исследованиях, в справочни-	Самостоятельный поиск информации в учебной, научной, специальной и справочной литературе, её анализ, оценка и использо-			

		ках и энциклопедиях, в том числе онлайн, анализирует, оценивает и использует найденную и синтезирует новую информацию	вание при изучении новых и сложных математических тем и решении нестандартных математических задач, синтез новой информации				
ИУК	ИУК-1.2 Способен применять системный подход при решении математических и прикладных задач						
1	Пороговый уровень	Знает и понимает основные принципы системного подхода к решению математических и прикладных задач	Решает под руководством преподавателя несложные типовые математические и прикладные задачи, требующие системного подхода к их решению				
2 Продвинутый уровень		Применяет системный подход при решении математических и прикладных задач, анализирует результаты	Самостоятельно решает типовые математические и прикладные задачи, требующие системного подхода к их решению, анализирует полученные результаты				
3 Высокий уровень		Способен создавать и применять при решении математических и прикладных задач новые, единые и более эффективные подходы и методологии, анализировать и оценивать результаты	Самостоятельно решает сложные математические и прикладные задачи, требующие системного подхода к их решению, анализирует и оценивает полученные результаты				
ОПК	-1. Способен учитыват	ъ современные тенденции развития техники і	•				
		измерительной и вычислительной техники, и					
_		н в области профессиональной деятельности,					
		м безопасности человека.	•				
	_	енять теоретические знания и методов матема	тического анализа и модели-				
	ния в профессионально						
		Базовые знания в объеме рабочей про-	Имеет представление о ос-				
1	Пороговый уровень	граммы (знание определений основных	новных математических мо-				
1	ттороговый уровень	понятий), умение решать типовые задачи	делях и методах решения				
		под руководством преподавателя.	прикладных задач.				
2 Продвинутый уро- граммы, правильное минологии, способн			Умеет применять основные математические модели и методы для решения прикладных задач.				
3	Высокий уровень	Систематизированные, глубокие знания в объеме рабочей программы, точное использование научной терминологии и свободное владение инструментарием учебной дисциплины, умение анализировать и применять теоретические знания при самостоятельном решении учебных задач и	В совершенстве владеет математическими моделями и методами решения прикладных задач.				

задач повышенной сложности.

5.2 Методика оценки знаний, умений и навыков студентов

Результаты обучения	Оценочные средства				
	*				
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач					
ИУК-1.1 Способен работать с источниками информации при изучении математических тем,					
применять системный подход при решении математических и при					
Поиск и использование информации под руководством препода-	Вопросы к экзамену				
вателя при изучении стандартных математических тем и реше-	Экзаменационные билеты				
нии типовых математических задач	Индивидуальные задания				
Самостоятельный поиск информации в учебной и справочной	Doubout k okookowy				
литературе, её анализ и использование при изучении стандарт-	Вопросы к экзамену Экзаменационные билеты				
ных математических тем и решении типовых математических					
задач	Индивидуальные задания				
Самостоятельный поиск информации в учебной, научной, спе-					
циальной и справочной литературе, её анализ, оценка и исполь-	Вопросы к экзамену				
зование при изучении новых и сложных математических тем и	Экзаменационные билеты				
решении нестандартных математических задач, синтез новой	Индивидуальные задания				
информации	-				
ИУК-1.2 Способен применять системный подход при решении м	математических и прикладных				
задач	•				
Решает под руководством преподавателя несложные типовые	Вопросы к экзамену				
математические и прикладные задачи, требующие системного	Экзаменационные билеты				
подхода к их решению	Индивидуальные задания				
Самостоятельно решает типовые математические и прикладные	Вопросы к экзамену				
задачи, требующие системного подхода к их решению, анализи-	Экзаменационные билеты				
рует полученные результаты	Индивидуальные задания				
Самостоятельно решает сложные математические и прикладные	Вопросы к экзамену				
задачи, требующие системного подхода к их решению, анализи-	Экзаменационные билеты				
рует и оценивает полученные результаты	Индивидуальные задания				
ОПК-1. Способен учитывать современные тенденции развития техники и технологий в области					
трансферной безопасности, измерительной и вычислительной те					
нологий при решении типовых задач в области профессиональн					
защитой окружающей среды и обеспечением безопасности челове					
ИОПК-1.1. Способен применять теоретические знания и методов	математического анализа и мо-				
делирования в профессиональной деятельности.					
Способен под руководством преподавателя применять есте-	Вопросы к экзамену				
ственнонаучные и общеинженерные знания, методы математи-	Экзаменационные билеты				
ческого анализа и моделирования к простейшим задачам, кото-	Индивидуальные задания				
рые могут встретится в профессиональной деятельности.	тидивидуальные задания				
Способен самостоятельно применять естественнонаучные и об-	Вопросы к экзамену				
щеинженерные знания, методы математического анализа и мо-	Экзаменационные билеты				
делирования к типовым задачам, которые могут встретится в	Индивидуальные задания				
профессиональной деятельности.	тидивиду вививно задания				
Способен самостоятельно применять естественнонаучные и об-	Вопросы к экзамену				
щеинженерные знания, методы математического анализа и мо-	Экзаменационные билеты				
делирования к сложным, нетиповым задачам, которые могут	Индивидуальные задания				
встретится в профессиональной деятельности.					

5.4 Критерии оценки практических работ

За каждое индивидуальное задание можно максимально набрать 15 баллов -5 баллов за выполнение задания и 10 баллов за его защиту. К защите допускаются студенты, набравшие за выполнение задания не менее трёх баллов.

Критерий оценки ответа на защите индивидуального задания.

0—1 балл — неспособность объяснить решения задач даже при наличии наводящих вопросов преподавателя; полное отсутствие знаний по теоретическим основам задания.

- 2–3 балла неуверенное объяснение решения задач даже при наличии наводящих вопросов преподавателя; фрагментарные знания теоретических основ задания, незнание используемой терминологии, грубые ошибки в рассуждениях.
- 4—5 баллов неуверенное объяснение решений задач при наличии наводящих вопросов преподавателя; неуверенное знание теоретических основ задачи, неуверенное знание используемой терминологии;
- 6–8 баллов уверенное объяснение решений задач, знание теоретических основ задания, возможно наличие негрубых ошибок в используемых формулах, формулировках и определениях, которые сам студент исправляет в процессе ответа.
- 9–10 баллов уверенное объяснение решений задач, уверенное знание теоретических основ задания и используемой терминологии.

5.6 Критерии оценки экзамена

На экзамене за ответ на теоретические вопросы и решение задач возможно максимально набрать 40 баллов.

Критерий оценки ответа на теоретический вопрос или решения задачи на экзамене.

- 0—1 балл полное отсутствие знаний по теоретическому вопросу; отсутствие навыков решения задачи даже под руководством преподавателя.
- 2–3 балла фрагментарные знания теоретического вопроса, незнание используемой в вопросе терминологии, грубые ошибки в рассуждениях; грубые ошибки в решении задачи, неуверенное решение задачи под руководством преподавателя.
- 4–5 баллов неуверенное знание теоретического вопроса в объеме учебной программы, неуверенное знание используемой в вопросе терминологии; уверенное решение задачи под руководством преподавателя.
- 6–8 баллов знание теоретического вопроса в объеме учебной программы при наличии незначительных ошибок в используемых формулах, формулировках и определениях, которые сам студент исправляет в процессе ответа; самостоятельное решение задачи при наличии незначительных арифметических ошибок.
- 9–10 баллов уверенное знание теоретического вопроса в объеме учебной программы и уверенное знание используемой в вопросе терминологии; уверенное самостоятельное решение задачи и уверенное знание используемой в задаче терминологии.

Итоговая оценка определяется как сумма текущего контроля и промежуточной аттестации и соответствует баллам:

Экзамен

Оценка	Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Баллы	87-100	65-86	51-64	0-50

6 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕ-НИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО УЧЕБНОЙ ДИСЦИ-ПЛИНЕ

Самостоятельная работа студентов (СРС) направлена на закрепление и углубление освоения учебного материала, развитие практических умений. СРС включает следующие виды самостоятельной работы студентов:

чтение текста (учебника, дополнительной литературы);

конспектирование;

решение задач и упражнений по образцу;

работа со справочной литературой;

ответы на контрольные вопросы;

подготовка к аудиторным занятиям;

подготовка к экзамену;

подготовка к предметным и межпредметным олимпиадам.

Перечень контрольных вопросов и заданий для самостоятельной работы студентов приведен в приложении и хранится на кафедре.

Для СРС рекомендуется использовать источники, приведенные в п. 7.

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

7.1 Основная литература

	1 / 1		
√ Ω 1/Π	Библиографическое описание	Гриф	Кол-во экз. / Url
1	Шипачев, В. С. Высшая математика: учебник / В.С. Шипачев. – Москва: ИНФРА-М, 2023. – 479 с. – (Высшее образование).	Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для студентов высших учебных заведений	https://znani um.com/cata log/product/ 1894562
2	Шипачев, В. С. Задачник по высшей математике: учебное пособие / В.С. Шипачев. — 10-е изд., стер. — Москва: ИНФРА-М, 2023. — 304 с.	Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений	https://znani um.com/cata log/product/ 1896401

7.2 Дополнительная литература

№ п/п	Библиографическое описание	Гриф	Количество экземпляров
1	Сборник задач по высшей математике: учеб. Пособие для вузов: в 4 ч. Ч.1 / под ред. А.С. Поспелова. – М.: Юрайт, 2021 355 с (Высшее образование).	Рек. УМО ВО в качестве учеб. пособия для студ. вузов, обучающ. по инж-техн. направл. и спец.; Рек. МО и науки РФ в качесве учеб. пособия для студ. вузов. обучающ. по направл. и. спец. в обл. техники и технологии	15
2	Сборник задач по высшей математике: учеб. Пособие для вузов: в 4 ч. Ч.2 / под ред. А.С. Поспелова. — М.: Юрайт, 2021 253 с (Высшее образование).	Рек. УМО ВО в качестве учеб. пособия для студ. вузов, обучающ. по инж-техн. направл. и спец.; Рек. МО и науки РФ в качесве учеб. пособия для студ. вузов. обучающ. по направл. и. спец. в обл. техники и технологии	15
3	Сборник задач по высшей математике: учеб. Пособие для вузов: в 4 ч. Ч.3 / под ред. А.С. Поспелова. – М.: Юрайт, 2021 395 с (Высшее образование).	Рек. УМО ВО в качестве учеб. пособия для студ. вузов, обучающ. по инж-техн. направл. и спец.; Рек. МО и науки РФ в качесве учеб. пособия для студ. вузов. обучающ. по направл. и. спец. в обл. техники и технологии	15
4	Сборник задач по высшей математике: учеб. Пособие для вузов: в 4 ч. Ч.4 / под ред. А.С. Поспелова. – М.: Юрайт, 2021 218 с (Высшее образование).	Рек. УМО ВО в качестве учеб. пособия для студ. вузов, обучающ. по инж-техн. направл. и спец.; Рек. МО и науки РФ в качесве учеб. пособия для студ. вузов. обучающ. по направл. и. спец. в обл. техники и технологии	15

7.3 Перечень ресурсов сети Интернет по изучаемой дисциплине http://biblio.bru.by/, http://new.znanium.com

7.4 Перечень наглядных и других пособий, методических рекомендаций по проведению учебных занятий, а также методических материалов к используемым в образовательном процессе техническим средствам

7.4.1 Методические рекомендации

- 1. Высшая математика. Математика. Линейная алгебра и аналитическая геометрия. Определители и матрицы. Системы линейных алгебраических уравнений. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составитель Т.Ю. Орлова. Могилев: Белорус.-Рос. ун-т, 2022. 48 с. (56 экз.).
- 2. Высшая математика. Линейная алгебра и аналитическая геометрия. Математика. Векторы и элементы аналитической геометрии. Методические рекомендации к практическим занятиям для студентов всех специальностей дневной и заочной форм обучения / составители И.У. Примак, Д.В. Роголев, А.Г. Козлов. Могилев: Белорус.-Рос. ун-т, 2022. 41 с. (56 экз.).
- 3. Высшая математика. Математика. Введение в математический анализ. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки очной и заочной форм обучения / составитель А.М. Бутома. Могилев: Белорус.-Рос. ун-т, 2023. 48 с. (56 экз.).
- 4. Высшая математика. Математика. Математический анализ. Дифференцирование функций одной переменной. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составитель А.Н. Бондарев. Могилев: Белорус.-Рос. ун-т, 2022. 41 с. (56 экз.).
- 5. Высшая математика. Математика. Математический анализ. Функции нескольких переменных. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составители А.Н. Бондарев, Т.Ю. Орлова. Могилев: Белорус.-Рос. ун-т, 2022. 44 с. (56 экз.).
- 6. Высшая математика. Математика. Интегральное исчисление функции одной переменной. Неопределенный интеграл. Методические рекомендации к практическим занятиям для студентов всех специальностей и всех направлений подготовки дневной и заочной форм обучения / составитель А.М. Бутома. Могилев: Белорус.-Рос. ун-т, 2021. 36 с. (56 экз.).
- 7. Высшая математика. Математика. Определенный интеграл. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составители Л.И. Сотская, Е.Л. Старовойтова. Могилев: Белорус.-Рос. ун-т, 2019. 46 с. (56 экз.).
- 8. Высшая математика. Математика. Интегральное исчисление функций многих переменных. Кратные интегралы. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составители Т.Ю. Орлова, Д.В. Роголев. Могилев: Белорус.-Рос. ун-т, 2021. 37 с. (56 экз.).
- 9. Высшая математика. Математика. Криволинейные и поверхностные интегралы. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составители Т.Ю. Орлова, Д.В. Роголев. Могилев: Белорус.-Рос. ун-т, 2021. 44 с. (56 экз.).
- 10. Высшая математика. Математика. Дифференциальные уравнения. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки / составитель Т.Ю. Орлова. Могилев: Белорус.-Рос. ун-т, 2020. 48 с. (56 экз.).
- 11. Высшая математика. Математика. Ряды. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки очной формы обучения / составитель А.Н. Бондарев. Могилев: Белорус.-Рос. ун-т, 2023. 48 с. (56 экз.).
- 12. Высшая математика. Математика. Теория функций комплексной переменной. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составители Т.Ю. Орлова, И.У. Примак, А.А. Романенко. Могилев: Белорус.-Рос. ун-т, 2021. 48 с. (56 экз.).
- 13. Высшая математика. Математика. Ряд Фурье. Интеграл Фурье. Операционное исчисление. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки дневной и заочной форм обучения / составители Т.Ю. Орлова, А.А. Романенко. Могилев: Белорус.-Рос. ун-т, 2020. 46 с. (56 экз.).

14. Высшая математика. Математика. Дифференциальное и интегральное исчисления функций одной и многих переменных. Методические рекомендации к практическим занятиям для студентов всех специальностей и направлений подготовки очной и заочной форм обучения / составители А.А. Романенко, А.Г. Козлов. – Могилев : Белорус.-Рос. ун-т, 2023. – 48 с. (56 экз.).

7.4.2 Информационные технологии

Мультимедийные презентации

- Тема 7. Кривые второго порядка на плоскости. Поверхности второго порядка.
- Тема 17. Экстремумы ФМП.
- Тема 21. Интегрирование тригонометрических функций.
- Тема 28. Приложения определенного, двойного, тройного и криволинейных интегралов.
- Тема 29. Обыкновенные дифференциальные уравнения первого порядка.
- Тема 39. Ряды Тейлора и Маклорена.
- Тема 40. Тригонометрические ряды Фурье.
- Тема 42. Преобразование Лапласа.

MATEMATUKA

(наименование дисциплины)

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

Направление подготовки <u>20.03.01 Техносферная безопасность</u> Направленность (профиль) <u>Техносферная безопасность (общий профиль)</u> Квалификация Бакалавр

Срок получения образования: 4 года

	Форма обучения
	Очная
Курс	1
Семестр	1,2
Лекции, часы	84
Практические занятия, часы	100
Экзамен, семестр	1,2
Контактная работа по учебным занятиям, часы	184
Самостоятельная работа, часы	284
Всего часов / зачетных единиц	468 / 13

1 Цель учебной дисциплины

Целью учебной дисциплины является подготовка специалиста с развитым логическим и алгоритмическим мышлением, владеющего основными методами исследования и решения математических задач и способного самостоятельно расширять математические знания и проводить постановку и математический анализ прикладных задач.

2. Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен

- знать: основные методы линейной и векторной алгебры, аналитической геометрии; основные положения математического анализа функций одной и нескольких переменных; комплексные числа, элементы теории функций комплексной переменной; основы теории рядов и обыкновенных дифференциальных уравнений;
- уметь: выполнять основные алгебраические операции над матрицами, вычислять определители, решать системы линейных алгебраических уравнений; выполнять алгебраические вычисления с векторами; строить линии на плоскости по заданному уравнению; работать с простейшими системами координат; находить собственные значения и собственные векторы простейших матриц; дифференцировать и интегрировать функции; решать простейшие дифференциальные уравнения, интегрируемые в квадратурах; разлагать функции в степенные ряды; применять операции дифференциального и интегрального исчислений для решения конкретных задач;
- иметь навык: аналитического и численного решения алгебраических и обыкновенных дифференциальных уравнений; творческого аналитического мышления.

3. Требования к освоению учебной дисциплины Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды форми-	
руемых ком-	Наименования формируемых компетенций
петенций	
УК-1	Способен осуществлять поиск, критический анализ и синтез информа-
У К-1	ции, применять системный подход для решения поставленных задач
	Способен учитывать современные тенденции развития техники и тех-
	нологий в области трансферной безопасности, измерительной и вычис-
ОПК-1	лительной техники, информационных технологий при решении типо-
	вых задач в области профессиональной деятельности, связанной с за-
	щитой окружающей среды и обеспечением безопасности человека

4. Образовательные технологии: традиционные, мультимедиа.