УДК 630.323

ОБОСНОВАНИЕ ПАРАМЕТРОВ ЛЕСОТРАНСПОРТНЫХ СИСТЕМ ДЛЯ РАБОТЫ ПОД ПОЛОГОМ ДРЕВОСТОЯ

Э. Ф. ГЕРЦ, А. В. МЕХРЕНЦЕВ, А. Ф. УРАЗОВА Уральский государственный лесотехнический университет Екатеринбург, Россия

Выполнение рубок системой машин, включающей транспортные системы (TC), способные перемещаться в процессе выполнения работ под пологом древостоя и обеспечивающие трелевку заготовленной древесины без прокладки волоков, вызывает определенный интерес российских исследователей, однако в практике до настоящего времени практически не реализуется.

Ряд причин такого положения вещей очевиден: это востребованность таких ТС только для выполнения рубок ухода и выборочных рубок в спелых и перестойных древостоях, ограничение допустимых габаритных размеров и их маневренности в зависимости от густоты формируемого рубками древостоя, а также малая производительность в сравнении с серийными трелевочными тракторами, использующимися в традиционных технологиях.

ТС для работы под пологом древостоя должны иметь габариты и маневренность, обеспечивающие минимум повреждений деревьев, оставляемых на доращивание. Мера повреждения подроста и деревьев, оставляемых на доращивание, является одним из показателей экологичности рубок, определяемой степенью сохранности всех компонентов леса. При этом технологическое оборудование и мощность должны обеспечивать возможность работы с заготавливаемыми лесоматериалами.

Экологические требования к механизму предполагают сохранение верхних горизонтов почвы при транспортировке заготовленной древесины. Таким образом, немаловажным является выбор шасси транспортного трелевочного средства.

Существенное влияние на дополнительное уширение прохода оказывает общая компоновка ТС и механизм ее поворота. Используются гусеничные или колесные движители. Механизм поворота ТС с гусеничным движителем обеспечивает минимальный радиус поворота. В этом случае для разворота необходима круговая площадка диаметром, близким к длине машины. Однако такие повороты приводят к сдвигу и минерализации почвы, что рассматривается, как значительный экологический ущерб лесной экосистеме. Поэтому ограничимся сравнением шасси с колесным движителем и двумя вариантами поворота: шарнирно-сочлененной рамой и передними поворотными колесами [1].

Для перемещения лесных длинномерных грузов в погруженном положении, наряду с расположением грузовой платформы в пределах шасси лесотранспортной машины, широко используются ТС, включающие тягач с прицепным элементом, в качестве которого могут использоваться полуприцеп, прицеп или роспуск. Выбор типа прицепного элемента для работы под пологом древостоя определяется его способностью следовать при повороте за тягачом с минимальными отклонениями.

Колесное шасси имеет, как правило, два передних поворотных колеса. При движении таких шасси по дуге радиусы поворота передних и задних колес не совпадают, прицепные элементы оказывают дополнительное влияние на ширину необходимого прохода.

Увеличение длины перемещаемого груза не только ограничивает минимально возможный радиус поворота TC, но и требует существенно большего уширения коридора, необходимого для прохода [2–4].

Выполненные исследования позволяют заключить, что:

- 1) минимальный радиус поворота TC определяется общей длиной и типом прицепного устройства. При равной длине грузовой платформы наименьший минимальный радиус поворота TC, включающей роспуск, а наибольший у TC с прицепом. Увеличение минимального радиуса поворота TC при работе с прицепом, в сравнении с полуприцепом, определяется наличием дышла и его длиной;
- 2) при движении TC по радиальным кривым уширение коридора, необходимое для беспрепятственного прохода, определяется общей длиной и минимально при комплектовании тягача роспуском, колеса которого повторяют траекторию задних колес тягача. Преимущество TC с роспуском наиболее очевидно при минимальных радиусах поворота и возрастает по мере увеличения длины грузовой платформы;
- 3) при равной длине грузовой платформы прицеп имеет худшие показатели маневренности в составе ТС, т. к. при равных прочих габаритах ее длина больше на длину дышла прицепа. При малой длине грузовой платформы использование прицепа при трелевке лесоматериалов под пологом древостоя наименее рационально.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Какое шасси нужно машине, работающей под пологом древостоя? / Ю. Н. Безгина [и др.] // Леса России и хозяйство в них. -2014. -№ 2 (49). C. 30–32.
- 2. Трелевка древесины мини-трактором при проходных рубках в сосняках / Э. Ф. Герц [и др.] // Леса России: политика, промышленность, наука, образование: материалы VII Всерос. науч.-техн. конф. Санкт-Петербург, 2022. С. 113–116.
- 3. Рациональная технология рубок с трелевкой заготовленной древесины мини-тракторами под пологом древостоя / Э. Ф. Герц [и др.] // Изв. вузов. Сер. Лесной журнал. -2017. -№ 2 (356). С. 119-129.
- 4. **Герц, Э. Ф.** К вопросу об организации рубок с применением бензомоторных пил и мини-тракторов / Э. Ф. Герц, Н. Н. Теринов // Изв. вузов. Сер. Лесной журнал. 2019. № 2 (368). С. 86–94.