Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет»

УТВЕРЖДАЮ

Первый проректор Вспорусско-Российского

университета

ОМ И.В. Машин

«22» 12/2023

Регистрационный № УД-*D10304/Б.1.0.26*/р

МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

(наименование дисциплины)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Направление подготовки 01.03.04 Прикладная математика **Направленность (профиль)** Разработка программного обеспечения

Квалификация Бакалавр

	Форма обучения
	Очная
Курс	3
Семестр	5
Лекции, часы	34
Практические занятия, часы	34
Экзамен, семестр	5
Контактная работа по учебным занятиям, часы	68
Самостоятельная работа, часы	76
Всего часов / зачетных единиц	144/4

Кафедра-разработчик программы: «Высшая математика»

Составитель: Е.Л. Старовойтова, канд. пед. наук, доцент,

Рабочая программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования - бакалавриат по направлению подготовки 01.03.04 Прикладная математика № 11 от 10.01.2018 г., учебным планом рег. № 010304-2.1 от 28.04.2023 г.

Рассмотрена и рекомендована к утверждению 28.09.2023 г., протокол № 1.	кафедрой «Высшая м	иатематика»
Зав. кафедрой В.Г. Замур	раев	
Одобрена и рекомендована к утверждению На Белорусско-Российского университета	учно-методическим (советом
20.12.2023 г., протокол №3.		
Зам. председателя Научно-методического совета	Styp (С.А. Сухоцкий
Рецензент: И.В. Марченко, зав. кафедрой математики фак УО «МГУ имени А.А. Кулешова», кандидат ф	3 77,	
Рабочая программа согласована:		
Ведущий библиотекарь	lly o.c. lle	y cuo 89
Начальник учебно-методического отдела	Af	О.Е. Печковская

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Цель учебной дисциплины

Развитие логического и алгоритмического мышления; повышение общей математической культуры; формирование навыков формализации моделей реальных процессов; анализ систем, процессов и явлений при поиске оптимальных решений и выборе наилучших способов реализации этих решений; выработка умений и исследовательских навыков анализа прикладных задач; формирование приемов и навыков практического исследования задач оптимального производственного планирования.

1.2 Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен знать:

- основные понятия математического программирования;
- основные методы решения задач математического программирования;
- области применения методов математического программирования при решении прикладных задач.

уметь:

- составлять математические модели задач прикладного содержания;
- проводить расчеты, получать количественные результаты;
- анализировать полученные результаты, делать выводы по поставленной задаче.

владеть:

- навыками составления и исследования математических моделей прикладных задач, для решения которых применяются методы математического программирования;
 - алгоритмами решения задач математического программирования.

1.3 Место учебной дисциплины в системе подготовки студента

Дисциплина относится к Блоку 1 "Дисциплины (модули)" (Обязательная часть).

Перечень учебных дисциплин, изучаемых ранее, усвоение которых необходимо для изучения данной дисциплины:

- дискретная математика;
- линейная алгебра;
- математический анализ;
- аналитическая геометрия;
- вычислительные методы алгебры;
- численный анализ;
- вариационное исчисление и оптимальное управление.

Перечень учебных дисциплин, которые будут опираться на данную дисциплину:

- исследование операций и теория игр;
- методы анализа больших данных;
- искусственный интеллект, машинное обучение, нейронные сети.

Кроме того, результаты, полученные при изучении дисциплины на лекциях и практических занятиях, будут применены при прохождении учебной и производственной практик, а также при подготовке выпускной квалификационной работы и в дальнейшей профессиональной деятельности.

1.4 Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды формируемых ком-	Наименования формируемых компетенций
петенций	
	Способен обоснованно выбирать, дорабатывать и применять для реше-
ОПК-2	ния исследовательских и проектных задач математические методы и мо-
OHK-2	дели, осуществлять проверку адекватности моделей, анализировать ре-
	зультаты, оценивать надёжность и качество функционирования систем
пи 1	Способен проводить научно-исследовательские разработки при исследо-
ПК-1	вании самостоятельных тем

2 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Вклад дисциплины в формирование результатов обучения выпускника (компетенций) и достижение обобщенных результатов обучения происходит путём освоения содержания обучения и достижения частных результатов обучения, описанных в данном разделе.

2.1 Содержание учебной дисциплины

Номер тем	Наименование тем	Содержание	Коды форми- руемых ком- петенций
1	Введение в математическое программирование	Предмет математического программирования. Краткая классификация методов математического программирования. Постановка общей задачи математического программирования.	ПК-1 ОПК-2
2	Математическая постановка задачи линейного программирования (ЗЛП)	Примеры линейных оптимизационных задач. Основные формы записи ЗЛП, их эквивалентность и способы преобразования.	ПК-1 ОПК-2
3	Геометрическая интерпретация элементов ЗЛП. Графический метод решения ЗЛП	Геометрическая интерпретация целевой функции и ограничений ЗЛП. Графический метод ЗЛП. Свойства решений ЗЛП. Основная теорема ЗЛП.	ПК-1 ОПК-2
4	Симплексный метод решения ЗЛП	Общая идея симплексного метода. Построение начального опорного плана, признак его оптимальности.	ПК-1 ОПК-2
5	Метод искусственно- го базиса	Переход к нехудшему опорному плану. Понятие о вырождении. Монотонность и конечность симплексного метода. Альтернативный оптимум, признак неограниченности целевой функции. М-задача	ПК-1 ОПК-2
6	Теория двойственно- сти	Понятие двойственности. Построение двойственных задач и их свойства. Основные теоремы двойственности и их прикладной аспект.	ПК-1 ОПК-2
7	Транспортная задача (ТЗ) и ее математическая модель. Построение начальных опорных планов.	Постановка транспортной задачи по критерию стоимости в матричной форме. Закрытая и открытая модели ТЗ. Методы построения исходного опорного плана.	ПК-1 ОПК-2
8	Решение транспортной задачи методом потенциалов	Признак оптимальности плана ТЗ. Алгоритм решения ТЗ методом потенциалов. Решение ТЗ с открытой моделью.	ПК-1 ОПК-2
9	Применение оценок в послеоптимизационном анализе	Анализ коэффициентов технологической матрицы	ПК-1 ОПК-2
10	Программирование на	Понятие сети. Элементы сетевого планирования: сетевой	ПК-1

	сетях	график комплекса операций и правила его построения, расчет временных параметров сетевого графика. Вероятностные сети.	ОПК-2
11	Предмет дискретного программирования	Основные понятия дискретного программирования. Классические задачи дискретного программирования. Краткая классификация математических моделей дискретного программирования.	ПК-1 ОПК-2
12	Методы дискретной оптимизации	Классификация методов дискретной оптимизации. Сущность метода отсечения и метода ветвей и границ.	ПК-1 ОПК-2
13	Задача коммивояжера	Постановка задачи коммивояжера и ее решение методом ветвей и границ. Приведение задачи коммивояжера на максимум к задаче на минимум.	ПК-1 ОПК-2
14	Метод Гомори	Алгоритм метода Гомори для решения полностью целочисленной задачи линейного программирования.	ПК-1 ОПК-2
15	Предмет динамиче- ского программиро- вания	Основные понятия. Особенности задач динамического программирования. Геометрическая интерпретация задачи динамического программирования.	ПК-1 ОПК-2
16	Принципы динамического программирования	Принцип оптимальности. Принцип погружения. Функциональные уравнения Беллмана. Применение принципов оптимальности и погружения к решению задач динамического программирования	ПК-1 ОПК-2
17	Линейное параметрическое программирование	Производственные проблемы, приводящие к задачам линейного параметрического программирования. Задача линейного программирования с целевой функцией, зависящей от параметра.	ПК-1 ОПК-2

2.2 Учебно-методическая карта учебной дисциплины

№ недели	Лекции (наименование тем)	Часы	Практические (семинарские) занятия	Часы	Самостоятельная работа, часы	Форма контроля знаний	Баллы (max)
Модул	ть 1						
1	1. Введение в математическое программирование	2	Пр. р. 1. Построение математических моделей некоторых задач математического программирования.	2	2		
2	2. Математическая постанов- ка задачи линейного про- граммирования (ЗЛП)	2	Пр. р. 2. Основные формы записи ЗЛП, переход от одной формы к другой.	2	2		
3	3. Геометрическая интерпретация элементов ЗЛП. Графический метод решения ЗЛП	2	Пр. р. 3. Графический способ решения 3ЛП.	2	2	3И3	10
4	4. Симплексный метод решения ЗЛП	2	Пр. р. 4. Нахождение оптимального плана ЗЛП симплексным методом	2	2		
5	5. Метод искусственного базиса	2	Пр. р. 5. Нахождение оптимального плана ЗЛП симплексным методом (решение М-задачи)	2	2	3И3	10
6	6. Теория двойственности	2	Пр. р. 6. Пары двойственных задач. Прикладной аспект теорем двойственности.	2	3		
7	7. Транспортная задача (ТЗ) и ее математическая модель. Построение начальных опор-	2	Пр. р. 7. Решение транспортной задачи методом потенциалов (закрытая модель)	2	2		

	ных планов.						
8	8. Решение транспортной задачи методом потенциалов	2	Пр. р. 8. Решение транспортной задачи методом потенциалов (открытая модель)	2	3	ЗИЗ ПКУ	10 30
Модул	ть 2						
9	9. Применение оценок в послеоптимизационном анализе	2	Пр. р. 9. Анализ коэффициентов технологической матрицы	2	2		
10	10. Программирование на сетях	2	Пр. р. 10. Построение сетевого графика, расчет временных параметров сетевого графика	2	3	3И3	10
11	11. Предмет дискретного программирования	2	Пр. р. 11. Построение математических моделей задач дискретного программирования	2	2		
12	12 Методы дискретной оптимизации	2	Пр. р. 12. Эвристические методы решения задач дискретного программирования	2	3		
13	13. Задача коммивояжера	2	Пр. р. 13. Решение задачи коммивояжера методом ветвей и границ	2	3	КР	10
14	14. Метод Гомори	2	Пр. р. 14. Решение полностью целочисленной задачи линейного программирования методом Гомори	2	2		
15	15. Предмет динамического программирования	2	Пр. р. 15. Построение математических моделей задач динамического программирования	2	2		
16	16. Принципы динамического программирования	2	Пр. р. 16. Применение принципов оптимальности и погружения к решению задач динамического программирования	2	3		
17	17. Линейное параметрическое программирование	2	Пр. р. 17. Решение ЗЛП с параметром	2	2	3И3 ПКУ	10 30
18-21					36	ПА (эк- за- мен)	40
	Итого	34		34	76		100

Принятые обозначения:

Текущий контроль –

КР – контрольная работа;

3ИЗ – защита индивидуального задания;

ПКУ – промежуточный контроль успеваемости.

ПА – промежуточная аттестация.

Итоговая оценка определяется как сумма текущего контроля и промежуточной аттестации и соответствует баллам:

Экзамен

Оценка	Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Баллы	87-100	65-86	51-64	0-50

3 ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении дисциплины используется модульно-рейтинговая система оценки знаний студентов. Применение форм и методов проведения занятий при изучении различных тем курса представлено в таблице.

№ п/п	Форма проведе-	Вид аудитор		
	ния занятия			Всего часов
		Лекции	Практические занятия	
1	Традиционные		1-17	34
2	Мультимедиа	1-17		34
	ИТОГО	34	34	68

4 ОЦЕНОЧНЫЕ СРЕДСТВА

Используемые оценочные средства по учебной дисциплине представлены в таблице и хранятся на кафедре.

№	Вид оценочных средств	Количество
п/п		комплектов
1	Вопросы к экзамену	1
2	Экзаменационные билеты	1
3	Тестовые (контрольные) задания	1
4	Индивидуальные задания	5

5 МЕТОДИКА И КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ СТУДЕНТОВ

5.1 Уровни сформированности компетенций

N₂	Уровни сфор-	Содержательное описание уровня*	Результаты обучения**						
п/п	мированности								
	компетенции								
Комн	Компетенция ПК-1: Способен проводить научно-исследовательские разработки при исследовании								
само	стоятельных тем								
Код	и наименование инс	дикатора достижения компетенции							
ИПК	-1.8 Способен приг	менять знание математического программир	ования при проведении научно-						
иссл	едовательских разр	работок							
1	Пороговый	Способен применять знание основных	Знает и понимает основные поня-						
	уровень	понятий, методов и моделей математи-	тия, методы и модели математиче-						
		ческого программирования при решении	ского программирования, умеет						
		типовых задач	применять свои знания к решению						
			типовых учебных задач, умеет						
			пользоваться справочной литера-						
			турой, владеет базовым математи-						
			ческим аппаратом						
2	Продвинутый	Способен применять знание понятий,	Умеет применять свои знания к						
	уровень	методов и моделей математического	решению стандартных учебных						
		программирования при решении стан-	задач, умеет пользоваться матема-						
		дартных исследовательских задач	тической литературой для само-						
			стоятельного изучения приклад-						
			ных вопросов, владеет математи-						
			ческим аппаратом и навыками мо-						
			делирования и анализа						

3	Высокий уро-	Способен применять знание классиче-	Умеет применять свои знания к
	вень	ских и современных понятий, методов и	решению нестандартных задач,
		моделей математического программиро-	способен оценивать результаты и
		вания при решении сложных и нестан-	развивать вероятностные методы и
		дартных исследовательских задач	модели
Комі	петенция ОПК-2: С	Способен обоснованно выбирать, дорабатыв	ать и применять для решения иссле-
дова	гельских и проектн	ных задач математические методы и модели	н, осуществлять проверку адекватно-
сти м	иоделей, анализиро	вать результаты, оценивать надёжность и ка	ачество функционирования систем
Код	и наименование инс	дикатора достижения компетенции	
		боснованно выбирать, дорабатывать и прим	
		методы и модели теории оптимизации, осу	
		результаты, оценивать надёжность и качес	
1	Пороговый	Знать и понимать основные определения	Умение распознавать математиче-
	уровень	и теоремы курса математического про-	ские модели и решать задачи, тре-
		граммирования в рамках учебной про-	бующие применять в знакомой
		граммы; уметь найти необходимую ин-	ситуации известные методы и ал-
		формацию; быть готовым к воспроизве-	горитмы математического про-
		дению полученных знаний.	граммирования.
2	Продвинутый	Уметь доказывать изученные теоремы;	Умение решать задачи, которые
	уровень	уметь анализировать и синтезировать	являются типичными, но при этом
		полученную информацию; знать и по-	требуют применения исследова-
		нимать междисциплинарные основы ма-	тельского подхода; осознанного
		тематического программирования.	выбора алгоритмов их решения.
3	Высокий уро-	Знать и понимать актуальные проблемы	Умение решать исследовательские
	вень	математического программирования;	задачи или задачи проектирования,
		уметь применять различные методы и	которые требуют определенной
		алгоритмы для решения задач; уметь	интуиции, размышлений и творче-
		представлять, объяснять, анализировать	ства в выборе математического
		и интерпретировать полученные резуль-	инструментария, интегрирования
		таты; уметь вести научную дискуссию;	знаний из разных разделов курса
		уметь систематизировать полученную	математического программирова-
		информацию.	ния, самостоятельной разработки
			алгоритма действий.
	<u> </u>		± ''1

Методика оценки знаний, умений и навыков студентов

Результаты обучения Оценочные средства		
Компетенция ПК-1. Способен проводить научно-исследовательские разработки при иссле-		
довании самостоятельных тем		
Пороговый уровень	Индивидуальные задания	
Пороговый уровень	Тестовые (контрольные) работы	
Продвинутый уровень	Индивидуальные задания	
продвинутый уровень	Тестовые (контрольные) работы	
Высокий уровень	Индивидуальные задания	
Высокий уровень	Тестовые (контрольные) работы	
Компетенция ОПК-2. Способен обоснованно выбирать, дорабатывать и применять для ре-		
шения исследовательских и проектных задач математические методы и модели, осу-		
ществлять проверку адекватности моделей, анализировать результаты, оценивать надёж-		
ность и качество функционирования систем		
Пороговый уровень	Индивидуальные задания	
	Тестовые (контрольные) работы	
Продвинутый уровень	Индивидуальные задания	
продвинутый уровень	Тестовые (контрольные) работы	

Высокий уровень	Индивидуальные задания	
Высокий уровень	Тестовые (контрольные) работы	

5.4 Критерии оценки практических и контрольных работ

Оценка эффективности усвоения студентом материала, пройденного на практических занятиях, осуществляется с помощью тестовых заданий (контрольных работ) и защиты индивидуальных заданий. Каждое индивидуальное задание оценивается по шкале от 0 до 10 баллов.

При этом студент получает за одно задание:

20% от максимального числа баллов за задание в случае, когда продемонстрировано полное незнание изученного материала, отсутствие элементарных умений и навыков;

40% от максимального числа баллов за задание в случае, когда допущены существенные ошибки, показавшие, что студент не обладает обязательными умениями по данной теме в полной мере;

60% от максимального числа баллов за задание в случае, когда допущено более одной ошибки, но студент обладает обязательными умениями по проверяемой теме;

80% от максимального числа баллов за задание в случае, когда оно выполнено полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки), допущена одна незначительная ошибка:

100% от максимального числа баллов за задание в случае, когда оно выполнено полностью, в логических рассуждениях и обосновании решения нет пробелов и ошибок, в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

5.6 Критерии оценки экзамена

Итоговая оценка на экзамене по пятибалльной системе определяется как сумма баллов промежуточного контроля успеваемости и промежуточной аттестации (экзамена) и соответствует суммарным баллам:

Оценка	Отлично	Хорошо	Удовлетворительно	Неудовлетворительно
Баллы	87-100	65-86	51-64	0-50

При этом промежуточный контроль успеваемости оценивается до 60 баллов, а промежуточная аттестация (экзамен) оценивается до 40 баллов. Экзаменационный билет состоит из 4 вопросов: 2 теоретических вопроса и 2 задачи, за каждое задание можно набрать до 10 баллов.

Для экзамена.

Оценка **«отлично»**, выставляется за: систематизированные, глубокие и полные знания в объеме рабочей программы, точное использование научной терминологии и свободное владение инструментарием учебной дисциплины, умение анализировать и применять теоретические знания при самостоятельном решении типовых учебных задач и задач повышенной сложности, способность делать обоснованные выводы.

Оценка **«хорошо»**, выставляется за: полные знания в объеме рабочей программы, правильное использование терминологии, способность самостоятельно решать типовые задачи учебной дисциплины.

Оценка **«удовлетворительно»**, выставляется за: обладание базовыми знаниями (владеет терминологией, знает определения понятий) в объеме рабочей программы достаточными для усвоения последующих дисциплин, умение решать простейшие типовые залачи.

Оценка **«неудовлетворительно»**, выставляется за: фрагментарные знания по базовым вопросам в объеме рабочей программы, недостаточными для усвоения последующих

дисциплин, неуверенное использование терминологии, неумение решать типовые задачи.

6 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕ-НИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО УЧЕБНОЙ ДИСЦИ-ПЛИНЕ

Самостоятельная работа студентов (СРС) направлена на закрепление и углубление освоения учебного материала, развитие практических умений. СРС включает следующие виды самостоятельной работы студентов:

- конспектирование;
- решение задач и упражнений по образцу;
- работа с лекционными материалами, включая основную и дополнительную литературу, которые представлены в пунктах 7.1 и 7.2;
 - работа с материалами курса, вынесенными на самостоятельное изучение;
 - работа со справочной литературой;
 - выполнение контрольных работ;
 - подготовка к аудиторным занятиям и контрольным работам;
 - подготовка к экзамену.

Для СРС рекомендуется использовать источники, приведенные в п. 7.

Перечень методических указаний приведен в п. 7.4.1 и они хранятся в кабинете математики (к. 405). Кроме того, их электронные варианты представлены в университетской сети Интернет по адресу: eco.bru.by.

По адресу cdo.bru.by (учебные материалы), находится разработанный на кафедре электронный учебно-методический комплекс (ЭУМК), который включает:

- курс лекций;
- методические рекомендации для практических занятий;
- примеры контрольных заданий
- вопросы к экзаменам,
- образцы экзаменационных билетов;
- список литературы.

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

7.1 Основная литература

№ п/п	Библиографическое описание	Гриф	Количество экземпляров
1	Орлова, И.В. Экономикоматематическое моделирование: практическое пособие по решению задач / И.В. Орлова, М.Г. Бич. — 3-е изд., испр. и доп. — Москва: Вузовский учебник: ИНФРА-М, 2023. — 190 с.		https://znanium.com/catalog/ product/1920327

7.2 Дополнительная литература

№ п/п	Библиографическое описание	Гриф	Количество экземпляров
1	Шевченко, А.С. Линейное программирование. Практикум : учеб. пособие / А.С. Шевченко. — Москва : ИНФРА-М, 2018. — 297 с.		https://znanium.com/catalog/ product/1007387
2	Литвин, Д.Б. Линейное программирование. Транс-		https://znanium.com/catalog/

	портная задача: Учебное пособие / Литвин Д.Б., Мелешко С.В., Мамаев И.И Ставрополь: Сервисшкола, 2017.		product/976430
3	Аверинцев, М.Б. Математическое программирование: конспект лекций / М.Б. Аверинцев, Н. А. Корниенко Москва: РУТ (МИИТ), 2018 66 с.		https://znanium.com/catalog/ product/1895301
4	Карманов, В.Г. Математическое программирование : учебное пособие / В.Г. Карманов 6-е изд., испр Москва : ФИЗМАТЛИТ, 2008 264 с.		https://znanium.com/catalog/ product/405720
5	Балдин, К.В. Математическое программирование : учебник / К.В. Балдин, Н.А. Брызгалов, А.В. Рукосуев 2-е изд Москва : Дашков и К, 2018 218 с.		https://znanium.com/catalog/ product/415097
6	Пашков, Н.Н. Транспортная логистика (линейное программирование) : учебное пособие / Н.Н. Пашков Москва : Прометей, 2020 202 с.		https://znanium.com/catalog/ product/1851317
7	Юрьева, А. А. Математическое программирование: учеб. пособие 2-е изд., испр. и доп Спб.; М.; Краснодар: Лань, 2021 432с.: ил (Учебники для вузов. Специальная литература).	Доп. УМО по образов. в области прикладной математики и управлению качеством в качестве учебного пособия для студентов вузов, обучающихся по направлению подготовки "Прикладная математика"	4

7.3 Перечень ресурсов сети Интернет по изучаемой дисциплине

Eco.bru.by, cdo.bru.by, exponenta.ru, Wikipedia, http://www.intuit.ru

7.4 Перечень наглядных и других пособий, методических рекомендаций по проведению учебных занятий, а также методических материалов к используемым в образовательном процессе техническим средствам

7.4.1 Методические рекомендации

1. Математическое программирование. Методические рекомендации к практическим занятиям для студентов направления подготовки 01.03.04 «Прикладная математика» очной формы обучения / составители А.М. Бутома, Л.И. Сотская. — Могилев : Белорус.-Рос. ун-т, 2022.-48 с. -50 экз.

7.4.2 Информационные технологии

Темы 1-17.

7.4.3 Перечень программного обеспечения, используемого в образовательном процессе:

Свободно распространяемое ПО Open Office

8 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИ-ПЛИНЫ

Материально-техническое обеспечение дисциплины содержится в паспорте лабораторий ауд.405, рег. номер ПУЛ-4.535-405/1-23 и ауд.233, рег. номер ПУЛ-4.535-233/1-23.

МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

(наименование дисциплины)

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

Направление подготовки 01.03.04 Прикладная математика **Направленность (профиль)** Разработка программного обеспечения

	Форма обучения
	Очная
Курс	3
Семестр	5
Лекции, часы	34
Практические занятия, часы	34
Экзамен, семестр	5
Контактная работа по учебным занятиям, часы	68
Самостоятельная работа, часы	76
Всего часов / зачетных единиц	144/4

1. Цель учебной дисциплины

Развитие логического и алгоритмического мышления; повышение общей математической культуры; формирование навыков формализации моделей реальных процессов; анализ систем, процессов и явлений при поиске оптимальных решений и выборе наилучших способов реализации этих решений; выработка умений и исследовательских навыков анализа прикладных задач; формирование приемов и навыков практического исследования задач оптимального производственного планирования.

2. Планируемые результаты изучения дисциплины

В результате освоения учебной дисциплины студент должен

знать:

- основные понятия математического программирования;
- основные методы решения задач математического программирования;
- области применения методов математического программирования при решении прикладных задач.

уметь:

- составлять математические модели задач прикладного содержания;
- проводить расчеты, получать количественные результаты;
- анализировать полученные результаты, делать выводы по поставленной задаче.

владеть:

- навыками составления и исследования математических моделей прикладных задач, для решения которых применяются методы математического программирования;
- алгоритмами решения задач математического программирования.

3. Требования к освоению учебной дисциплины

Освоение данной учебной дисциплины должно обеспечивать формирование следующих компетенций:

Коды формируе- мых компетенций	Наименования формируемых компетенций	
ОПК-2	Способен обоснованно выбирать, дорабатывать и применять для решения ис-	
	следовательских и проектных задач математические методы и модели, осу-	
	ществлять проверку адекватности моделей, анализировать результаты, оцени-	
	вать надёжность и качество функционирования систем	
ПК-1	Способен формулировать постановки задач моделирования, осуществлять ана-	
	лиз математических моделей и проверять их корректность	

4. Образовательные технологии

Традиционные, мультимедиа.