УДК 620.179.14

С. Г. САНДОМИРСКИЙ, *д-р техн. наук*, *доц.* Объединенный институт машиностроения НАН Беларуси (Минск, Беларусь)

ИСПОЛЬЗОВАНИЕ РЕЗУЛЬТАТА МОДЕЛИРОВАНИЯ БЕЗГИСТЕРЕЗИСНОЙ КРИВОЙ НАМАГНИЧИВАНИЯ ФЕРРОМАГНИТНОГО МАТЕРИАЛА ДЛЯ МАГНИТНОГО СТРУКТУРНОГО АНАЛИЗА

Аннотация

По безгистерезисной кривой намагничивания определяют внутренний коэффициент N_i размагничивания материала, который возникает вследствие механических напряжений и неоднородностей в его структуре и достоверно характеризует ее изменения. Но для определения этой кривой и N_i проводят полный цикл многочисленных магнитных воздействий на материал и измерений его намагниченности. В докладе для упрощения определения безгистерезисных кривых намагничивания и Столетова материала и его N_i на основании достоверных физических предпосылок математически точно разработаны формулы, использующие результаты измерения по стандартным его намагниченности технического насыщения, остаточной методикам намагниченности и коэрцитивной силы. Формулы использованы для анализа влияния температуры отпуска стали 30 на ее N_i. Также сопоставлены начальная и максимальная магнитные восприимчивости этой стали при безгистерезисном и коммутационном намагничивании.

Ключевые слова: ферромагнитные материалы, неразрушающий магнитный контроль структуры, безгистерезисное намагничивание, внутренний коэффициент размагничивания, коэрцитивная сила, намагниченность технического насыщения, остаточная намагниченность

Безгистерезисное намагничивание материала [1-5] заключается В воздействии на него постоянным намагничивающим полем напряженностью Н и переменным магнитным полем, доводящим материал до технического насыщения. После этого амплитуду переменного поля плавно уменьшают до нуля. Полученная кривая безгистерезисного намагничивания относится к кривым основных состояний, которые при заданных условиях обладают наименьшей свободной энергией, то есть термодинамически наиболее устойчивы [3]. Она имеет большую крутизну в слабых полях и не имеет точки перегиба. По тангенсу угла α ее наклона к оси ординат в точке H = 0 (рис. 1) определяют внутренний коэффициент N_i размагничивания материала, который возникает вследствие напряжений и неоднородностей в его структуре. Поэтому N_i материала позволяет достоверно судить об изменениях его структуры и механических свойств [2, 6, 7]. В этом важность определения кривой безгистерезисного намагничивания для ферромагнитных материалов [7–13].

199

Необходимость многочисленных прецизионных магнитных воздействий на термически размагниченный (по с требованию [4, п. 37)]) материал и измерений его намагниченности с последующей статистической обработкой результатов измерений и дифференцированием полученной зависимости усложняют и снижают точность определение N_i. Между тем в [14] показано, что все «специфические» изменения петель магнитного гистерезиса, магнитных проницаемостей, релаксационных и других магнитных параметров сталей, связанные с изменениями их структурного состояния, обусловлены только происходящими при этом изменениями коэрцитивной силы H_c , остаточной намагниченности M_r и намагниченности M_s технического насыщения этих сталей, которые могут быть измерены по стандартным методикам [15] с сравнению другими магнитными минимальными по с параметрами относительными погрешностями δ . При соблюдении требований [15] δ измерения H_c не превышает ±2%, M_s и $M_r - \pm 3\%$, а δ измерения отношения $K_r =$ M_r/M_s (коэффициента прямоугольности – «rectangularity factor») при измерении M_s и M_r на одной и той же аппаратуре не превышает ±1% [16].

В докладе сообщается об установленной связи безгистерезисной кривой намагничивания и внутреннего коэффициента N_i размагничивания ферромагнитного материала с основными магнитными параметрами предельной петли его магнитного гистерезиса (H_c , M_s и M_r), использовании установленных связей для магнитного структурного анализа.

Для моделирования безгистерезисной кривой намагничивания магнитного материала воспользовались [17] тем, что она близка к средней линии горизонтальных хорд его предельной петли гистерезиса [1, 7, 10] (рис.1).

Рис. 1. Нисходящая (1) и восходящая (2) ветви петли магнитного гистерезиса материала с $K_r = 0,8$ и безгистерезисная кривая намагничивания (3), построенные по формулам (1, 2, 4). α – угол наклона безгистерезисной кривой намагничивания к оси ординат в точке h = 0

Погрешность ее определения при таком подходе на начальном участке не превышает $\pm 3\%$ [7]. Методика [17] использует так же многократно подтвержденные аппроксимации зависимостей изменения намагниченности M материала от намагничивающего поля H на нисходящей (1) и восходящей (2) ветвях предельной петли его магнитного гистерезиса формулами Фрелиха:

$$M = \frac{M_r M_s (H + H_c)}{M_s H_c + M_r H}, \qquad (1) \qquad \qquad M = \frac{M_r M_s (H - H_c)}{H_c (M_s - 2M_r) + M_r H}. \qquad (2)$$

Намагниченности M на нисходящей и восходящей ветвях предельной петли магнитного гистерезиса соответствуют значения H_1 и H_2 намагничивающего поля (рис. 1). Их полусумма (с учетом их знака) равна напряженности поля H на безгистерезисной кривой намагничивания (рис. 1). Проведя преобразования, получили [17]:

$$M = \frac{M_{r}M_{s}H}{H_{c}(M_{s} - M_{r}) + M_{r}H}$$
 (3)

Введя обозначения $m=M/M_s$, $h=H/H_c$, $K_r=M_r/M_s$ ир (3), получим:

$$m = \left[1 + (1 - K_r) / hK_r\right]^{-1} \qquad . \tag{4}$$

Формулы (3) и (4) получены математически точно на основании экспериментально обоснованных методики [1, 7] и зависимостей (1) и (2).

На их основании получим для N_i ферромагнитного материала:

$$N_{i} = \frac{H_{c}(1 - K_{r})}{M_{r}} .$$
(5)

В [18] рекомендовано в магнитной структуроскопии определять параметры $K_r = M_r/M_s$ и $\xi = H_c/M_s$ материала. С учетом этого:

$$N_i = \xi \frac{1 - K_r}{K_r} \qquad . \tag{6}$$

Формулы (5), (6) позволяют анализировать влияние режимов получения магнитных материалов на их N_i .

Так же математически точно из (3) разработана формула для расчета кривой Столетова ферромагнитного материала (график $\chi(H)$ зависимости магнитной восприимчивости χ от напряженности магнитного поля H в ферромагнетике) при безгистерезисном намагничивании по результатам измерения H_c , M_s и M_r :

$$\chi = \frac{M_r M_s}{H_c (M_s - M_r) + M_r H} \tag{7}$$

Разработанная формула позволяет проанализировать зависимость $\chi(H)$ в разных диапазонах изменения H для любых материалов, результаты измерения H_c , M_r и M_s которых приведены в справочной литературе. На рис. 2 для примера приведены результаты анализа изменения внутреннего коэффициента N_i размагничивания стали 30 от температуры T_t ее отпуска. Магнитные параметры стали 30 после разных температур T_t отпуска после закалки от 860°С, измеренные в [19] по стандартным методикам, приведены в таблице 1.

Полученный результат показывает монотонность зависимостей $N_i(T_t)$ и $N_i(\text{HRC})$ во всем диапазоне изменения T_t (в отличие от немонотонности этих зависимости у других магнитных параметров). Этот результат получен на основании измерений по стандартным методикам параметров H_c , M_r и M_s стали 30, приведенных в справочнике [19].

Табл. 1. Результаты измерения в [19] твердости HRC, H_c , M_r и M_s стали 30, отпущенной при разных T_t , и результаты расчета N_i этих материалов по формуле (5)

№ обр.	T_t ,	HRC	<i>H</i> _c , А/м	<i>М_r</i> , кА/м	<i>М</i> _s , кА/м	N_i
	°C					
1	20	46	2300	865	1589	0,001212
2	150	45	2250	870	1591	0,001172
3	200	44,5	2100	876	1599	0,001084
4	250	43,5	1430	970	1644	0,000604
5	300	44	1220	1007	1652	0,000473
6	350	41	1130	1070	1650	0,000371
7	400	38	995	1145	1643	0,000263
8	450	34	873	1248	1645	0,000169
9	500	32	876	1265	1648	0,000161
10	550	26	866	1277	1639	0,000150
11	600	23	834	1280	1632	0,000141
12	650	19	730	1235	1622	0,000141

Рис. 2. Влияние температуры T_t отпуска (а) и твердости HRC (б) стали 30 после закалки от 860 °C на ее внутренний коэффициент N_i размагничивания. Расчет N_i по формуле (5)

Экспериментальное построение полученных на рис. З зависимостей с использованием стандартной методики определения N_i невозможно, так как выполнение требования [4, п. 37)] построения безгистерезисной кривой намагничивания на термически размагниченном материале (то есть после нагрева выше температуры Кюри) исказит влияние температуры T_t отпуска образца на его магнитные свойства.

Эффективность использования разработанной формулы (7) для расчета безгистерезисных кривых Столетова проиллюстрируем на примере сопоставления коммутационных и безгистерезисных кривых Столетова стали 30, отпущенных при разных температурах T_t отпуска после закалки от 860°С (рис. 3). Для расчета использованы результаты измерения в [19] магнитных параметров H_c , M_r и M_s этой стали, приведенные в таблице, и формула [20] для расчета кривой Столетова при коммутационном намагничивании.

Обратим внимание, мере увеличения ЧТО по напряженности Hнамагничивающего поля безгистерезисные и коммутационные кривые намагничивания образцов (1 и 1', 2 и 2', 3 и 3') сближаются и практически совпадают. Но при стремлении напряженности Н намагничивающего поля к нулю разница между магнитными восприимчивостями у материала на безгистерезисных и коммутационных кривых намагничивания материала возрастает и достигает максимума при H = 0. Их анализ показал, что безгистерезисное намагничивание в 3,25-9,35 раза повышает максимальную магнитную восприимчивость стали и на 1,13-2,04 порядка повышает ее начальную магнитную восприимчивость.

Рис. 3. Коммутационные (1, 2, 3) и безгистерезисные (1', 2', 3') кривые Столетова стали 30 (соответственно образцы № 1, 5 и 9 из таблицы)

Выводы. Ha основании достоверно обоснованных физических предпосылок математически точно разработаны формулы для определения безгистерезисной кривых намагничивания и Столетова и внутреннего коэффициента N_i размагничивания ферромагнитного материала, использующие результаты измерения его коэрцитивной силы, остаточной намагниченности и намагниченности технического насыщения. Упрощение определения N_i и повышение его точности достигнуто благодаря тому, что для определения N_i необходимо один раз намагнитить материал до технического насыщения и измерить по стандартным методикам с минимальной по сравнению с другими магнитными параметрами погрешностью всего три основных магнитных параметра материала. Формулы предназначены для анализа влияния состава и термических обработок сталей, чугунов, пористых материалов на изменения их структуры.

СПИСОК ЛИТЕРАТУРЫ

1. Бозорт, Р. Ферромагнетизм. / Р. Бозорт. – М.: Изд. иностранной литературы, 1956. – 784 с.

2. Поливанов, К. М. Ферромагнетики. Основы теории практического применения / К. М. Поливанов, – М.–Л. : Государственное энергетическое издание, 1957. – 256 с.

3. Янус, Р. И. Намагничивания кривые/ Р. Янус // Физический энциклопедический словарь. Т. 3. М.: «Советская энциклопедия», 1963. – С.354-355.

4. ГОСТ 19693–74. Материалы магнитные. Термины и определения. М., Изд. стандартов. – 1974. – 32 с.

5. Silveyra, J. M. On the anhysteretic magnetization of soft magnetic materials / J. M. Silveyra, J. M. Conde Garrido // AIP Advances. March 2022. – Vol. 12. Iss. 3. id.035019. – 13 p. https://aip.scitation.org/doi/10.1063/9.0000328

6. Jiles, D. Introduction to Magnetism and Magnetic Materials / D. Jiles // Published by Chapman & Hall, London, 1989. – 440 p.

7. Сташков, А.Н. Магнитный метод определения количества остаточного аустенита в мартенситно-стареющих сталях / А. Н. Сташков, В. М. Сомова, Б. Ю. Сажина, Л. А. Сташкова А. Н. Ничипурук // Дефектоскопия. – 2011, № 12. – С.36-42.

8. Горкунов, Э.С. Влияние формы и ориентации пор на внутренний коэффициент размагничивания пористых магнитных материалов / Э. С. Горкунов, В. А. Захаров, А. И. Ульянов, А. А. Чулкина // Дефектоскопия. –2001, № 3. – С.31-37.

9. Takács, J. Internal Demagnetizing Factor in Ferrous Metals / J. Takács, G. Kovács, L. K. Varga // Hindawi Publishing Corporation. Journal of Metallurgy. – Vol. 2012, Article ID 752871. – 5 pages. doi: 10.1155/2012/752871

10. Сандомирский, С. Г. Оценка внутреннего коэффициента размагничивания чугунов по результатам измерения их остаточной намагниченности / С. Г. Сандомирский // Металлы. – 2013, № 3. – С.88-94.

11. Сандомирский, С. Г. Изменение связи между магнитными параметрами чугуна по сравнению со сталью под влиянием внутреннего размагничивания / С. Г. Сандомирский // Литье и металлургия. –2014, № 4. – С.105-108.

12. **Varga, L. K.** Determination of external and internal demagnetizing factors for strip-like amorphous ribbon samples / L. K. Varga, J. Kováčb, L. Novák // Journal of Magnetism and Magnetic Material. –2020. – Vol. 507. – P.1-5.

13. Mccann, Methods of investigating the demagnetization factors within assemblies of superparamagnetic nanoparticles / Mccann, M. Steven, J. Leach, Reddy, M. Subrayal, T. Mercer // AIP Advances 12, 075212 (2022); doi: 10.1063/5.0095899. – P.075212-1–075212-12.

14. Клюев, В. В. Анализ и синтез структурочувствительных магнитных параметров сталей / В. В. Клюев, С. Г. Сандомирский. – М. : Изд. дом «СПЕКТР», 2017. – 248 с.

15. ГОСТ 8.377-80. Материалы магнитомягкие. Методика выполнения измерений при определении статических магнитных характеристик. М. : Изд. стандартов, 1986. – 22 с.

16. **Чернышев, Е. Т.** Магнитные измерения/ Е. Т. Чернышев, Е. Н. Чечурина, Н. Г. Чернышева, Н. В. Студенцов. – М. : Изд. стандартов, 1969. – 248 с.

17. Сандомирский, С. Г. Определение безгистерезисной кривой намагничивания ферромагнитного материала по параметрам предельной петли его магнитного гистерезиса / С. Г. Сандомирский // Электротехника. – 2023, № 10. – С.55-60. DOI: 10.53891/00135860 2023 10 55.

18. Сандомирский, С. Г. Повышение структурной чувствительности остаточной намагниченности и коэрцитивной силы сталей/ С. Г. Сандомирский // Дефектоскопия. – 2023, № 8. – С.62-64.

19. Бида, Г. В. Магнитные свойства термообработанных сталей / Г. В. Бида, А. П. Ничипурук. – Екатеринбург: УрО РАН, 2005. – 218 с.

20. Сандомирский, С. Г. Расчет кривой Столетова конструкционных сталей по параметрам предельной петли магнитного гистерезиса / С. Г. Сандомирский // Электричество. – 2022, № 1. – С.18-23. DOI: 10.24160/0013-5380-2022-1-18-23

Контакты

sand_work@mail.ru (Сандомирский Сергей Григорьевич)