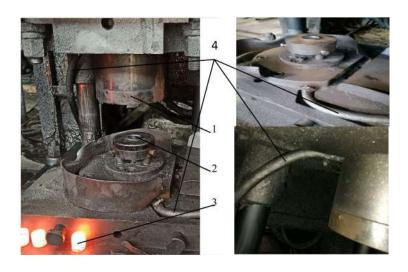
УДК 669

М.А. Рабыко, С.С. Дудкина, А.А. Каплунов

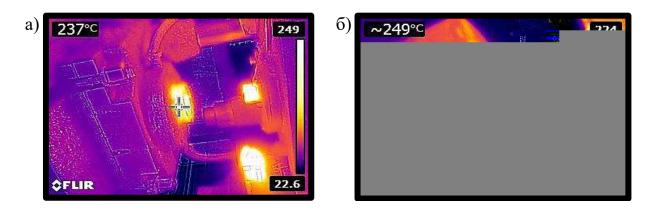
(МОУ ВО «Белорусско-Российский университет», г. Могилев, Беларусь) Научный руководитель – В. М. Шеменков


ВЛИЯНИЕ УПРОЧНЕНИЯ ТЛЕЮЩИМ РАЗРЯДОМ С ПРИКАТОДНЫМ МАГНИТНЫМ ПОЛЕМ НА ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ ДЕФОРМИРУЮЩИХ ЭЛЕМЕНТОВ ШТАМПОВ

В статье приведены результаты исследования влияния тлеющего разряда с прикатодным магнитным полем на твердость и износостойкость поверхностного слоя, а так же глубину структурно-фазовых превращений в штамповых сталях.

Деформирующие элементы штампов работают в условиях знакопеременного трибомеханического воздействия, а в условиях горячей штамповки еще и термического воздействия.

Для определения температуры разогрева деформирующих элементов штампов проведен анализ работы оборудования при горячей штамповке (ОАО «ТАиМ») и при холодной штамповке («Могилевлифтмаш»).


Одним из эффективных путей повышения стойкости деформирующих элементов штампов в условиях горячей штамповки является водоохлаждение. Широко применяют внутреннее водяное охлаждение пуансонов и матриц (рисунок 1).

1 – пуансон; 2 – матрица; 3 – заготовка; 4 – система водоохлаждения **Рисунок 1 – Штамп 576.587.1330-4008 OAO «ТАиМ»**

Критические точки стали, по которым происходят фазовые и микроструктурные превращения, существенным образом зависят от ее химического состава. Согласно литературным данным, легирующие элементы значительно влияют на превращения, происходящие при нагреве и охлаждении стали [1].

В термическом отделении МСЦ (горячая штамповка) (ОАО «ТАиМ») температура заготовки перед операцией штамповки $T\approx 900\,^{\circ}\text{C}$. Анализ температурного режима работы деформирующих элементов штампов показал, что в процессе работы пуансон разогревается до температуры 249 °C, матрица –до 237 °C (рисунок 2).

а – матрица; б – пуансон

Рисунок 2 — **Анализ температурного режима работы деформирующих** элементов штампов

При проведении экспериментальных работ по определению стойкости блока пробивки пазов (из стали X12МФ) в листе ротора двигателя АИР180.6 ОАО «Могилевлифтмаш» установлено, что вследствие трения и преобразования части работы в тепло температура деформирующих элементов штампов может достигнуть 80 °C–100 °C.

Одной из наиболее распространенных и универсальных характеристик, определяющих качество штамповых сталей, возможность их применения в различных конструкциях инструментов и при разных условиях работы, является микротвердость и износостойкость.

В качестве основных факторов, влияющих на приращение как поверхностной микротвердости, так и износостойкости, относительно не упрочненных изделий, рассмотрим такие составляющие процесса упрочнения, как напряжение тлеющего разряда U, кB, плотность тока тлеющего разряда J, A/m^2 , и время T, затраченное на упрочнение, мин.

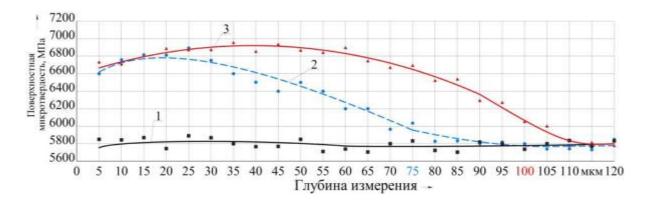
Таблица 3 — Графическая интерпретация влияния напряжения тлеющего разряда, времени обработки и плотности тока на приращение микротвердости по Виккерсу поверхности образцов

микротвердости по Виккереу поверхности образцов						
	Графическая интерпретация математической модели					
Марка	от U, кВ, и Т, мин,	от U, кВ, и I, мА,	от I, мА, и Т, мин,			
стали	при I = 50 мA и	при Т = 30 мин	при U = 2 кB			
	B = 0,040,06Тл	B = 0,040,06Тл	$B = 0.040.06$ T π			
5Х3В3МФС	101.5 % (5° %) was 0 20 T	131.5 19.8 129.8 124.1 124.7 124.7 124.7 124.7 124.7 124.7 124.7	129,5 5,0 127,6 125,7 123,8 241V 121,9 122,9 123,8 121,9 121,9 121,9 121,9 121,9 121,9 121,0			
Х12МФ	150 100 100 100 100 100 100 100 100 100	130 130 130 130 131 131 132 131 131 131 131 131 131 131	115.5 124.4 111.3 112.2 AHV 111.3 110 110 110 110 110 110 110 110 110 11			
4Х4ВМФС	1109 % 1153 11153	116,0 % 112,9 109,6 106,4 106,4 107,0 108,0 109,6	1132 50 100 100 100 100 100 100 100 100 100			

Таким образом, максимальная микротвердость образцов из стали достигается путем упрочнения с оптимальными режимами с учетом наименьшей удельной мощности горения W, $\kappa B \tau / M^2$, приведенными в таблице 4.

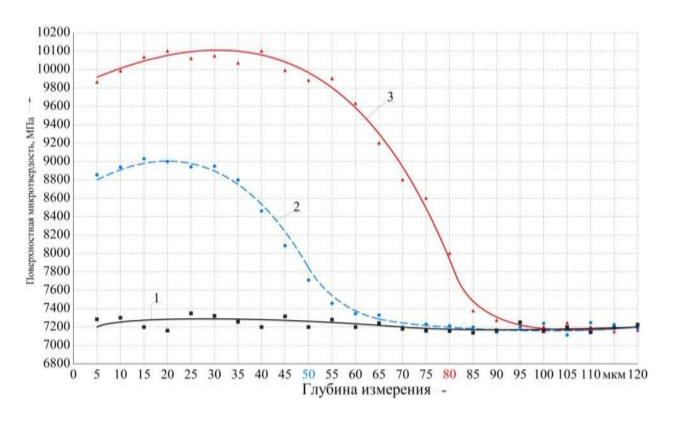
Таблица 4 — Оптимальные режимы обработки образцов из стали тлеющим разрядом с прикатодным магнитным полем

	Оптимальное значение технологических					Приращение
Сталь		параметров обработки				твердости
	U , к B	J , A/M^2	T, мин	W , $\kappa BT/m^2$	В, Тл	ΔHV, %
5Х3ВЗМФС	2,5–2,7	0,190	25	0,6	0.04	130,8
Х12МФ	1,0-1,25	0,170	20	0,8	0,04-	120,9
4Х4ВМФС	0,8–1,2	0,130	18	0,2	0,06	119,2


Таблица 5 — Графическая интерпретация влияния напряжения тлеющего разряда, времени обработки и плотности тока на приращение коэффициента износостойкости поверхности образцов

Козффиционт	Графическая интерпретация математической модели					
Марка	от U, кВ, и Т, мин,	от U, кВ, и I, мА,	от I, мА, и Т, мин,			
стали	при I = 50 мA и	при Т = 30 мин	при U = 2 кB			
	B = 0,040,06Тл	B = 0,040,06Тл	B = 0,040,06Тл			
5Х3В3МФС		1.75 1.54 1.33 1.13 1.13 1.13 0.91 k ₁ 0.91 0.13	2.15 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,82			
Х12МФ	2.00 (1.00 d.) (128 158 158 158 158 158 158 158 158 158 15	2.00 1.00 1.00 1.00 1.07 1.07 1.07 1.07 1			
4Х4ВМФС	2.35 2.23 2.11 1.99 1.87 1.57 1.75 1.75	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	2.48 2.29 2.31 2.37 3.37 1.38 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39			

На основании анализа графических интерпретаций зависимостей приращения коэффициента износостойкости, можно сделать вывод, что максимальная износостойкость образцов достигается при упрочнении их с технологическими параметрами, указанными в таблице 6.


Таблица 6 — Оптимальные режимы обработки образцов из стали тлеющим разрядом с прикатодным магнитным полем

	Оптимальное значение технологических					Приращение
Сталь	параметров обработки					коэффициента
Сталь	II _{re} D	J , A/M^2	T MIIII	W , $\kappa B T/M^2$	р т	износостойкости
	<i>U</i> , кВ	J, A/M	I, МИН	W, KDT/M	D , Π	k_L
5Х3ВЗМФС	1,1–1,25	0,190	15	0,2	0.04	2,0
Х12МФ	1,3–1,5	0,250	20	0,8	0,04-	2,0
4Х4ВМФС	0,5–0,8	0,175	13	0,14		2,3

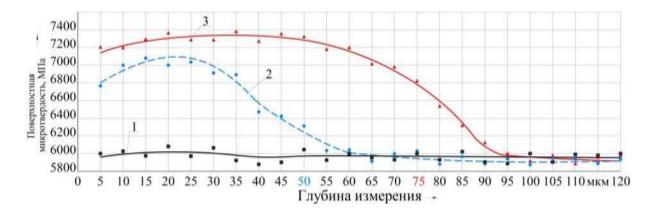

1 – до обработки; 2 – после обработки тлеющим разрядом с оптимальными параметрами; 3 – после обработки тлеющим разрядом с прикатодным магнитным полем с оптимальными параметрами

Рисунок 3 — Профиль микротвердости в поверхностном слое образцов из стали **5X3B3M**ФС

1 – до обработки; 2 – после обработки тлеющим разрядом с оптимальными параметрами; 3 – после обработки тлеющим разрядом с прикатодным магнитным полем с оптимальными параметрами

Рисунок 4 — Профиль микротвердости в поверхностном слое образцов из стали X12MФ

1 – до обработки; 2 – после обработки тлеющим разрядом с оптимальными параметрами; 3 – после обработки тлеющим разрядом с прикатодным магнитным полем с оптимальными параметрами

Рисунок 5 – Профиль микротвердости в поверхностном слое образцов из стали 4X4BMФС

Таблица 7 – Максимальные значения глубины упрочненного слоя при

различных методах упрочнения образцов

Сталь	Глубина Глубина упрочненного слоя после упрочнения тлеющим разрядом, мкм	Глубина упрочненного слоя после упрочнения тлеющим разрядом с прикатодным магнитным полем, мкм	Приращение глубины упрочненного слоя, %
5Х3В3МФС	50	80	55–60
Х12МФ	75	100	30–35
4Х4ВМФС	50	75	45–50

На основании анализа данных, можно сделать вывод о том, что применение магнитного поля при обработке изделий тлеющим разрядом приводит к дополнительному росту микротвердости их поверхностей, а также увеличению глубины упрочненного слоя.

Список использованных источников:

1 Принципы легирования, фазовые превращения, структура и свойства хладостойких свариваемых судостроительных сталей / И. В. Горынин [и др.] // Металловедение и термическая обработка металлов. -2007. -№ 1. - C. 9-15.

2 Кацев, П. Г. Статистические методы исследования режущего инструмента / П. Г. Кацев. — 2-е. изд., перераб. и доп. — М.: Машиностроение, 1974. — 231 с.: ил.

The article presents the results of a study of a human glow discharge with a near-cathode magnetic field on the hardness and durability of the surface layer, and also takes into account structural-phase transformations in die steels.

Сведения об авторах:

Рабыко Марина Александровна, МОУ ВО «Белорусско-Российский университет», машиностроительный факультет, старший преподаватель кафедры «Технология машиностроения»;

Дудкина София Сергеевна, МОУ ВО «Белорусско-Российский университет», машиностроительный факультет, специальность «Технология машиностроения», 2 курс;

Каплунов Александр Алексеевич, МОУ ВО «Белорусско-Российский университет», машиностроительный факультет, специальность «Технология машиностроения», 1 курс.

Сведения о научном руководителе:

Шеменков Владимир Михайлович, МОУ ВО «Белорусско-Российский университет», заведующий кафедрой «Технология машиностроения», кандидат технических наук, доцент.