POWER ELECTRONICS IN ELECTROMECHANICAL SYSTEMS COURSE SYLLABUS ABSTRACT

7-06-0716-03 Instrument engineering (speciality code and name)

Monitoring and control in electromechanical systems (concentration)

	STUDY MODE	
	full-time	part-time
Year	1	1
Semester	1	1
Lectures, hours	16	4
Practical classes (seminars), hours	16	4
Laboratory classes, hours	16	4
Pass/fail, semester	1	1
Contact hours	48	12
Independent study, hours	168	204
Total course duration in hours / credit units	216/6	

Advanced higher education

1. Course outline

The purpose of the academic discipline is to develop students' knowledge about the characteristics, classification and operating principle of power electronic devices; basic electromagnetic processes in semiconductor energy converters and main applications of power electronics devices.

2. Course learning outcomes

Upon completion of the course, students will be expected to

know:

- the principle of operation and features of the use of power semiconductor devices;

- classification, purpose, basic circuit design solutions of power electronics devices, features of their design;

- basic process equations, equivalent circuits and characteristics;

- operating principle and control algorithms in electronic electrical energy converters; be able to:

- solve practical problems in the design, testing and operation of power electronics devices;

- solve the simplest problems of modeling power electronic devices;

– perform basic calculations when designing and testing power electronic converters; have the skills:

- application of basic control algorithms in power electronic devices;

- carrying out calculations to determine the parameters and characteristics of power electronics devices;

- carrying out basic tests of electronic energy converters.

3. Competencies

Possess engineering methods for calculating semiconductor electrical energy converters and be able to apply them

4. Requirements and forms of midcourse evaluation and summative assessment

Current monitoring of progress involves assessing the completion of tests. Interim certification is carried out in the form of a test.