КРУПНОБЛОЧНОЕ ИЗЛОЖЕНИЕ ТЕМЫ «ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА»

И. В. МАРЧЕНКО

Могилевский государственный университет имени А. А. Кулешова Могилев, Беларусь

Крупноблочное изложение лекционного материала стало в современной практике преподавателя математических дисциплин вполне привычным. Это связано с особенностями новых учебных планов, которые ориентированы на неоправданно малое количество аудиторных часов по специальным дисциплинам. Так, для специальности 6-05-0113-04 «Физико-математическое образование» на весь курс математического анализа отводится 150 аудиторных часов, из которых лекций – 56 часов, практических занятий – 94 часа. При этом общее количество часов на изучение дисциплины составляет 324 учебных часа. В таких условиях любые виды занятий проводятся как введение и знакомство с определенными понятиями и фактами, а более глубокое их изучение происходит в виде самостоятельной работы студентов, а с одаренными студентами – в виде индивидуальных занятий, выходящих за рамки запланированных по нагрузке преподавателя

часов. Для некоторых тем математического анализа оказывается возможным применение технологии крупноблочного изложения [1].

Приведем еще один пример использования крупноблочного изложения учебного материала для темы «Геометрические приложения определенного интеграла». По учебной программе на нее отводится 2 часа лекций. Материал темы включает:

- понятие площади плоской фигуры, критерии квадрируемости, квадрируемость криволинейной трапеции, квадрируемость криволинейного сектора, вычисление площадей плоских фигур в декартовых координатах, полярных координатах и при параметрическом задании;
- понятие длины кривой, вычисление длины кривой в декартовых координатах, полярных координатах и при параметрическом задании;
- понятие объема тела, критерии кубируемости, нахождение объемов тел в декартовых координатах, объем тел вращения.

Материал очень объемный, поэтому большая часть теорем приводится без доказательств. Исключение составляют теоремы о спрямляемости кривых в полярных координатах и при параметрическом задании, при доказательстве которых используется теорема о замене переменной в определенном интеграле. Понятие объема тела вводится посредством аналогии с понятием площади, что также позволяет сэкономить время. Весь материал иллюстрируется примерами решения задач. Это оказывается возможным благодаря использованию крупноблочного изложения некоторых фрагментов темы и применению табл. 1 и 2.

Табл. 1. Вычисление площадей плоских фигур

Способ задания фигуры	Условие квадрируемости	Формула для вычис-
	1 12	ления длины
1. Декартовы координаты.	$1. f(x) \ge 0$ на $[a; b]$.	b C
Криволинейная трапеция (КТ)	2. f(x) непрерывна на $[a; b]$	$S = \int f(x)dx$
ограничена графиком функции		J a
y = f(x) на $[a; b]$		
2. Полярные координаты.	1. $g(\phi)$ непрерывна на $[\alpha; \beta]$	β
Криволинейный сектор ограни-		$S = \frac{1}{2} \int g^2(\varphi) d\varphi$
чен кривой $\rho = g(\phi), \phi \in [\alpha; \beta]$		$\frac{2}{\alpha}$
3. Параметрическое задание.	1. $\phi(t)$ непрерывна на [α; β].	β
КТ ограничена графиком функ-	2. $\psi(t)$ непрерывно-дифферен-	$S = \int \psi(t) \varphi'(t) dt$
ции $y = f(x)$ на $[a; b]$, заданной	цируема на [α; β].	α
системой	3. $\varphi'(t) \neq 0$ на [α ; β]	
$\begin{cases} x = \varphi(t); \\ y = \psi(t), \end{cases}$		
$y = \psi(t),$		
$t \in [\alpha; \beta], \alpha < \beta$		

Табл. 2. Вычисление длин кривых

Способ задания кривой <i>АВ</i>	Условие спрямляемости	Формула для вычисления длины
1. Декартовы координаты. AB — график функции $y = f(x)$ на $[a; b]$	f(x) непрерывно-дифференцируема на $[a;b]$	$L = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^{2}} dx$
2. Параметрическое задание AB системой функций $ \begin{cases} x = \varphi(t); \\ y = \psi(t), \\ t \in [\alpha; \beta] \end{cases} $	 Система (1) задает параметрически функцию y = f(x) на [a; b]. Функции φ(t), ψ(t) непрерывно-дифференцируемы на [α; β]. φ'(t) ≠ 0 на [α; β] 	$L = \int_{\alpha}^{\beta} \sqrt{(\varphi'(t))^{2} + (\psi'(t))^{2}} dt$
3. Полярные координаты. <i>AB</i> задана уравнением $\rho = g(\phi), \phi \in [\alpha; \beta]$	$g(\phi)$ непрерывно-дифференцируема на $[\alpha; \beta]$	$L = \int_{\alpha}^{\beta} \sqrt{(g(\varphi))^{2} + (g/(\varphi))^{2}} d\varphi$

Таким образом, использование крупноблочного изложения материала для темы «Геометрические приложения определенного интеграла» позволяет сформировать у студентов представления о понятиях площади фигуры, длины кривой и объеме тела, а также познакомить их с основными методами и приемами вычисления площадей, длин и объемов. При этом материал излагается системно. Кроме того, студенты знакомятся с такими методами научного познания, как аналогия, синтез, анализ.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. **Марченко, И. В.** Крупноблочное изложение темы «Несобственные интегралы» / И. В. Марченко // Проблемы устойчивого развития регионов Республики Беларусь и сопредельных стран : сб. ст. XII Междунар. науч.-практ. конф., Могилев, 26 мая 2023 г. – Могилев : МГУ имени А. А. Кулешова, 2024. – С. 131–134.

УДК 377.1: 372.851: 004.02

ОСОБЕННОСТИ ПРЕПОДАВАНИЯ МАТЕМАТИКИ В КОНЦЕПЦИИ ПЕРЕВЕРНУТОГО ОБУЧЕНИЯ В УСЛОВИЯХ ЦИФРОВИЗАЦИИ

Э. Ф. МУРЗИНА, Е. Н. ДИК, С. А. АРСЛАНБЕКОВА Башкирский государственный аграрный университет Уфа, Россия

В современном мире развитие цифровых технологий требует от специалистов не только технических навыков и квалификации, но и математической