УДК 621.785.5 ОСОБЕННОСТИ СТРУКТУРНОГО СТРОЕНИЯ ДИФФУЗИОННЫХ СЛОЕВ ЗУБЧАТЫХ КОЛЕС ПОСЛЕ ВАКУУМНОЙ ЦЕМЕНТАЦИИ

С. П. РУДЕНКО, А. Л. ВАЛЬКО, А. Н. ЧИЧИН Государственное научное учреждение «ОБЪЕДИНЕННЫЙ ИНСТИТУТ МАШИНОСТРОЕНИЯ НАН Беларуси» Минск, Беларусь

Процесс вакуумной цементации в среде ацетилена имеет ряд преимуществ перед традиционными методами химико-термической обработки в эндогазовой атмосфере. Линия химико-термической обработки «ModulTherm 7/1» фирмы «ALD Vacuum Technologies GmbH» позволяет существенно сократить продолжительность процесса цементации за счет активации насыщающей атмосферы при высоком качестве химико-термической обработки, значительно улучшить условия труда и повысить экономичность процесса упрочнения [1].

В процессе вакуумной цементации деталей происходит чередование циклов насыщения и диффузии. Этот режим характеризует группа параметров: продолжительность активного периода τ_A и паузы τ_Π , а также число циклов N. В зависимости от соотношения этих параметров циклические режимы подачи ацетилена имеют множество вариантов, что дает возможность изменять структурное состояние, насыщенность, фазовый состав цементованного слоя, а так же его свойства.

В процессе цементации активное насыщение деталей углеродом при подаче ацетилена происходит первые 90 с, после чего насыщающая способность науглероживающей среды снижается в связи с наступлением предела растворимости углерода в аустените при данной температуре (960 °C). Так как после первой активной стадии цикла на поверхности образуется сажистый углерод в виде моно- и полислоёв, который сохраняет высокую каталитическую активность и легко растворяется в металле во время пассивной стадии первого цикла, формируя толщину цементованного слоя, последующие активные стадии циклов имеют меньшую продолжительность — 30—35 с, а следующие пассивные стадии увеличиваются по длительности на 1 мин — для обеспечения плавного распределения углерода по толщине цементованного слоя за счет его диффузии. По окончании активных стадий циклов следует пассивная стадия длительностью 130 мин, на которой происходит выравнивание углеродного профиля в слое.

По окончании процесса цементации поверхностное содержание углерода на деталях из стали 20ХНЗА составляло 0,7 %, что обеспечивало после закалки деталей в среде инертного газа с реверсированием газового потока при давлении 1,6 МПа и скорости вращения двигателей, перемешивающих закалочную газовую смесь, 1500 мин⁻¹ требуемые значения твердости поверхности и сердцевины зубчатых колес.

Качество микроструктуры цементованных зубчатых колес, кроме требований к распределению углерода и микротвердости по толщине цементованного слоя, характеризуется распределением структурных составляющих по сечению зубчатых колес [2].

Металлографические исследования структурных составляющих цементованных слоев проводили с применением металлографического реактива [3]. Разработанный металлографический реактив позволяет идентифицировать микроструктуру путем дифференцированного выявления фазовых и структурных составляющих цементованных слоев, не определяемых общепринятыми методами, но в значительной степени влияющих на работоспособность высоконапряженных деталей [2].

Установлено, что после XTO на линии вакуумных печей после травления в реактиве [3] в микроструктуре исследованных образцов выявляется бейнит зернистой и пластинчатой морфологии, присутствие которого в количестве 10–20 % может приводить к снижению долговечности высоконапряженных зубчатых колес в два раза [2].

Для выявления причин образования продуктов промежуточного превращения аустенита при непрерывном охлаждении в процессе закалки на вакуумной линии «ModulTherm 7/1» были выполнены исследования охлаждающей способности закалочного модуля. Исследование охлаждающей способности закалочного модуля проводили по методике ОИМ.324.001ПМ с определением фактора охлаждающей способности H.

Из полученных результатов следует, что фактор охлаждающей способности закалочного модуля составляет H=0,2, что соответствует традиционной закалки в спокойном масле. Данные результаты свидетельствуют о недостаточной охлаждающей способности закалочной камеры вакуумной линии «ModulTherm 7/1», что может приводить к образованию продуктов немартенситного превращения аустенита в диффузионных слоях и сердцевине обрабатываемых деталей.

СПИСОКЛИТЕРАТУРЫ

- 1. Высокотемпературная вакуумная цементация резерв по снижению энергоемкости производства и улучшению качества зубчатых колес трансмиссий энергонасыщенных машин / А. А. Шипко [и др.] // Литьё и металлургия. 2016. \mathbb{N} 2. С. 104—109.
- 2. **Руденко, С. П.** Контактная усталость зубчатых колес трансмиссий энергонасыщенных машин / С. П. Руденко, А. Л. Валько. Минск : Беларус. навука, 2014. 126 с.
- 3. Пат. 15273, Республика Беларусь: МПК С 23 F 1/28. Металлографический реактив для выявления микроструктуры цементованной конструкционной стали / А. Л. Валько, С. П. Руденко, Е. И. Мосунов, А. И. Михлюк ; заявитель Объединенный ин-т машиностроения НАН Беларуси. № а20101136; заявл. 23.07.10 ; опубл. 30.12.11, Афіцыйны бюл. Вынаходства. Карасныя мадэлі. Прамысловыя узоры № 6. С. 132—133.