МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Технологии металлов»

МЕХАНИКА МАТЕРИАЛОВ

Методические рекомендации к практическим занятиям для студентов специальностей 6-05-0713-04 «Автоматизация технологических процессов и производств», 6-05-0714-02 «Технология машиностроения, металлорежущие станки и инструменты» и 6-05-0714-03 «Инженерно-техническое проектирование и производство материалов и изделий из них» очной и заочной форм обучения

Часть 1

Могилев 2025

УДК 539.3/.6 ББК 30.121 М64

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Технологии металлов» «27» ноября 2024 г., протокол № 8

Составители: канд. техн. наук, доц. И. М. Кузменко; ст. преподаватель С. В. Гонорова

Рецензент канд. техн. наук, доц. А. С. Федосенко

Методические рекомендации составлены в соответствии с рабочей программой дисциплины «Механика материалов» студентов ДЛЯ специальностей 6-05-0713-04 «Автоматизация технологических процессов и производств», 6-05-0714-02 «Технология машиностроения, металлорежущие станки инструменты» И 6-05-0714-03 «Инженерно-техническое проектирование и производство материалов и изделий из них» очной и заочной форм обучения. Содержат материалы к практическим занятиям.

Учебное издание

МЕХАНИКА МАТЕРИАЛОВ

Ответственный за выпуск Д. И. Якубович

Корректор И. В. Голубцова

Компьютерная верстка М. М. Дударева

Подписано в печать . Формат $60 \times 84/16$. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 36 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государсвенной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 07.03.2019. Пр-т Мира, 43, 212022, г. Могилев.

© Белорусско-Российский университет, 2025

Содержание

Введение	4
1 Геометрические характеристики поперечных сечений. Статический	
момент площади сечения. Определение центра тяжести составного и	
сложного сечения. Осевые, полярный и центробежный моменты инерции	
сечения. Определение моментов инерции при параллельном переносе осей.	
Моменты инерции простых сечений относительно центральных	
осей	5
2 Определение моментов инерции при повороте осей. Главные,	
центральные и главные центральные оси, определение их положения. Главные,	
центральные и главные центральные моменты инерции поперечного сечения	7
3 Вычисление моментов инерции сложных поперечных сечений	9
4 Построение эпюр продольных сил	13
5 Построение эпюр крутящих моментов	14
6 Построение эпюр поперечных сил и изгибающих моментов для	
прямого бруса	15
7 Расчеты на прочность при растяжении-сжатии прямого стержня	18
8 Расчеты на жесткость при растяжении-сжатии прямого стержня	21
9 Расчеты на прочность и жесткость при растяжении-сжатии	
статически неопределимых систем	24
10 Анализ линейного и плоского напряженного состояния в точке.	
Определение главных напряжений и главных площадок при плоском	
напряженном состоянии	26
11 Определение главных напряжений и расчеты по теориям прочности	29
12 Расчеты на прочность при прямом поперечном изгибе: проверочный,	
проектировочный расчет и определение допускаемой нагрузки	31
13 Расчет линейных и угловых перемещений при прямом поперечном	<i>J</i> 1
изгибе	34
14 Расчеты на прочность и жесткость при кручении прямолинейного	57
бруса круглого поперечного сечения	38
	40
Список литературы	41
Приложение А	41
Приложение Б	
Приложение В	43

Введение

Цель преподавания курса «Механика материалов» — получение теоретических знаний в объеме лекций по основам расчета на прочность, жесткость и устойчивость деталей и элементов конструкций.

Практические занятия позволяют закрепить теоретические знания и приобрести навыки расчета при различных видах нагружения.

Методические рекомендации содержат примеры решения задач по основным темам курса. Представлены задачи для самостоятельного решения с целью подготовки к занятиям, контрольным работам и экзамену. Также приведены контрольные вопросы по теории курса.

1 Геометрические характеристики поперечных сечений. Статический момент площади сечения. Определение центра тяжести составного и сложного сечения. Осевые, полярный и центробежный моменты инерции сечения. Определение моментов инерции при параллельном переносе осей. Моменты инерции простых сечений относительно центральных осей

Пример 1 – Для сечения, изображенного на рисунке 1.1, определить осевые и центробежный моменты инерции относительно указанных осей.

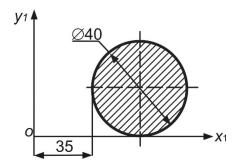


Рисунок 1.1

Решение

Заданное сечение имеет оси симметрии, которые являются собственными главными центральными осями [1–4]. На их пересечении находится центр тяжести – точка C (рисунок 1.2).

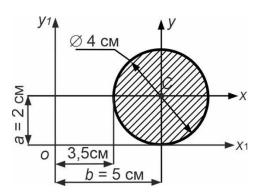


Рисунок 1.2

Определяем геометрические характеристики сечения относительно собственных главных центральных осей.

Площадь поперечного сечения

$$A = \frac{\pi \cdot d^2}{4} = \frac{3,14 \cdot 4^2}{4} = 12,56 \text{ cm}^2.$$

Осевые моменты инерции, в соответствии с таблицей А.1,

$$Ix = Iy = \frac{\pi \cdot d^4}{64} = \frac{3,14 \cdot 4^4}{64} = 12,56 \text{ cm}^4.$$

Центробежный момент инерции для симметричного сечения [1–4] $Ix_Cy_C=0$.

Заданные оси x_1 и y_1 и главные центральные оси x_C и y_C параллельны (см. рисунок 1.2). Поэтому осевые и центробежный моменты инерции относительно осей x_1 и y_1 определяем по формулам при параллельном переносе осей [1,2]:

$$Ix_C = Ix + a^2 \cdot A = 12,56 + 2^2 \cdot 12,56 = 62,8 \text{ cm}^4;$$

 $Ix_C = Ix + b^2 \cdot A = 12,56 + 5,5^2 \cdot 12,56 = 392,5 \text{ cm}^4;$
 $Ix_C = Ixy + a \cdot b \cdot A = 5,5 \cdot 2 \cdot 12,56 = 138,16 \text{ cm}^4.$

Пример 2 (для самостоятельного решения) — Для сечений, изображенных на рисунке 1.3, определить главные центральные моменты инерции и положение главных центральных осей.

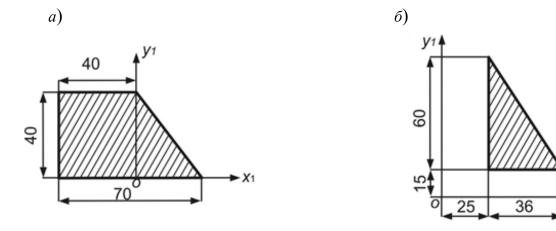


Рисунок 1.3

Контрольные вопросы

- 1 Запишите формулы для определения координат центра тяжести сечения.
- 2 Какие оси называют центральными осями сечения?
- 3 Относительно каких осей сечения статические моменты инерции равны нулю?
 - 4 Для каких сечений центробежный момент инерции будет равен нулю?
- 5 Запишите выражения для определения осевых моментов инерции при параллельном переносе осей.
- 6 Запишите выражения для определения центробежного момента инерции при параллельном переносе осей.
- 7 Как определить величину полярного момента инерции сечения, если известны величиы осевых моментов инерции?

2 Определение моментов инерции при повороте осей. Главные, центральные и главные центральные оси, определение их положения. Главные, центральные и главные центральные моменты инерции поперечного сечения

Пример 1 – Для сечения, изображенного на рисунке 2.1, определить главные центральные моменты инерции и положение главных центральных осей.

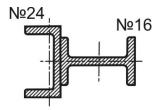


Рисунок 2.1

Решение

Заданное сечение (рисунок 2.2) состоит из профилей проката: I — швеллер, 2 — двутавр, для которых записываем геометрические характеристики относительно собственных главных центральных осей.

Для швеллера из таблиц ГОСТ 8240-97

$$A_1 = 30,6 \text{ cm}^2$$
; $Ix_1 = 2900 \text{ cm}^4$; $Iy_1 = 208 \text{ cm}^4$.

Для двутавра таблиц ГОСТ 8239-89, с учетом горизонтального расположения профиля в сечении,

$$A_2 = 15,9 \text{ cm}^2$$
; $Ix_2 = 58,6 \text{ cm}^4$; $Iy_1 = 873 \text{ cm}^4$.

Вычерчиваем заданное сечение. Через центры тяжести профилей проводим собственные главные центральные оси (см. рисунок 2.2).

Заданное сечение имеет ось симметрии, которая является главной центральной осью $x_{\mathbb{C}}$.

Определяем положение центра сечения относительно произвольно выбранных начальных осей $y_1,\ x_C$.

Центр тяжести располагается на главной центральной оси $x_{\scriptscriptstyle C}$, следовательно,

$$x_C = \frac{\sum A_i \cdot x_i}{\sum A_i} = \frac{A_1 \cdot x_1 + A_2 \cdot x_2}{A_1 + A_2} = \frac{30,6 \cdot 0 + 15,9 \cdot 10,42}{30,6 + 15,9} = 3,56 \text{ cm};$$

$$y_C = 0$$
,

где x_1, x_2 — координаты центров тяжести фигур, составляющих сечение относительно начальных осей x_C, y_1 .

Полученные координаты откладываем на начальных осях и отмечаем центр тяжести — точку C (см. рисунок 2.2). Через данную точку проводим вторую главную центральную ось y_C .

Определяем межосевые расстояния:

$$a_1 = 0$$
 cm, $b_1 = 3,56$ cm; $a_2 = 0$, $b_2 = 6,86$ cm.

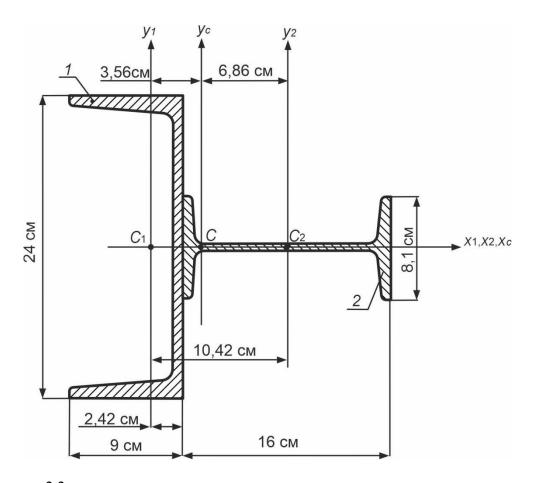


Рисунок 2.2

Для расчета главных центральных моментов инерции используем формулы при параллельном переносе осей:

$$Ix_{C} = \sum_{1}^{n} \left(Ix_{i} + a_{i}^{2} \cdot A_{i} \right) = \left(Ix_{1} + a_{1}^{2} \cdot A_{1} \right) + \left(Ix_{2} + a_{2}^{2} \cdot A_{2} \right) = 2900 + 58,6 = 2958,6 \text{ cm}^{4};$$

$$Iy_{C} = \sum_{1}^{n} \left(Iy_{i} + b_{i}^{2} \cdot A_{i} \right) = \left(Iy_{1} + b_{1}^{2} \cdot A_{1} \right) + \left(Iy_{2} + b_{2}^{2} \cdot A_{2} \right) = (208 + 3,56^{2} \cdot 30,6) + (873 + 6,86^{2} \cdot 15,9) = 2217,1 \text{ cm}^{4}.$$

Центробежный момент инерции $Ix_C y_C = 0$.

В данном случае положение центральных и главных центральных осей совпадает. Главные центральные моменты инерции

$$I_{\text{max}} = Ix_C = 2958,6 \text{ cm}^4$$
; $I_{\text{min}} = Iy_C = 2217,1 \text{ cm}^4$.

Ось x_C проходит через плоскость максимальной жесткости, а ось y_C — минимальной.

Пример 2 (для самостоятельного решения) — Для сечений, изображенных на рисунке 2.3, определить главные центральные моменты инерции и положение главных центральных осей.

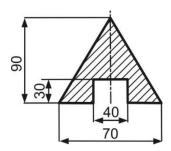
Рисунок 2.3

Контрольные вопросы

- 1 Какие оси называют главными центральными осями сечения?
- 2 В каких случаях можно установить положение главных центральных осей без соответствующих расчетов?
- 3 Изменится ли сумма осевых моментов инерции относительно взаимно перпендикулярных осей при повороте этих осей?
- 4 Запишите выражения для определения величин главных центральных моментов инерции сечения.
- 5 Какие существуют зависимости между геометрическими характеристиками при повороте осей?
- 6 Как определить угол поворота, определяющий положение главных центральных осей?

3 Вычисление моментов инерции сложных поперечных сечений

Пример 1 – Для сечения, изображенного на рисунке 3.1, определить главные центральные моменты инерции и положение главных центральных осей.



Решение

Вычерчиваем заданное сечение, в котором выделяем простые фигуры: I — треугольник, 2 — прямоугольник. Через центры тяжести этих фигур проводим собственные главные центральные оси (рисунок 3.2).

Определяем геометрические характеристики выделенных фигур в соответствии с таблицей A.1:

$$A_1 = \frac{1}{2} \cdot 9 \cdot 7 = 31,5 \text{ cm}^2; A_2 = 4 \cdot 3 = 12 \text{ cm}^2.$$

Заданное сечение имеет ось симметрии, которая является главной центральной осью $y_{\scriptscriptstyle C}$.

Определяем положение центра сечения относительно произвольно выбранных начальных осей $x_1,\ y_C.$ Центр тяжести располагается на главной центральной оси y_C , следовательно,

$$x_{C} = 0$$
;

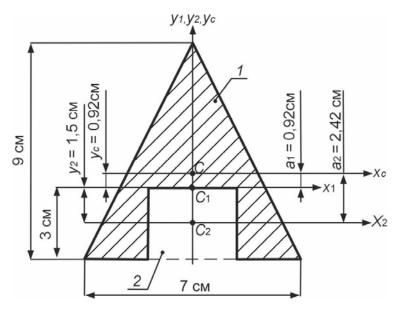
$$y_C = \frac{\sum A_i \cdot y_i}{\sum A_i} = \frac{A_1 \cdot y_1 - A_2 \cdot y_2}{A_1 - A_2} = \frac{31, 5 \cdot 0 - 12 \cdot (-1, 5)}{31, 5 - 12} = 0,92 \text{ cm},$$

где y_1, y_2 — координаты центров тяжести фигур, составляющих сечение относительно начальных осей x_1, y_C .

Полученные координаты откладываем на начальных осях и отмечаем центр тяжести — точку C (см. рисунок 3.2). Через данную точку проводим вторую главную центральную ось x_C .

Определяем межосевые расстояния:

$$a_1 = 0.92$$
 cm, $b_1 = 0$; $a_2 = 2.42$ cm, $b_2 = 0$.



Для расчета главных центральных моментов инерции используем формулы при параллельном переносе осей. С учетом данных таблицы А.1,

$$Ix_{C} = \sum_{1}^{n} \left(Ix_{i} + a_{i}^{2} \cdot A_{i} \right) = \left(Ix_{1} + a_{1}^{2} \cdot A_{1} \right) - \left(Ix_{2} + a_{2}^{2} \cdot A_{2} \right) = \left(\frac{7 \cdot 9^{3}}{36} + 0,92^{2} \cdot 31,5 \right) - \left(\frac{4 \cdot 3^{3}}{12} + 2,42^{2} \cdot 12 \right) = 89,13 \text{ cm}^{4};$$

$$Iy_C = \sum_{1}^{n} \left(Iy_i + b_i^2 \cdot A_i \right) = \left(Iy_1 + b_1^2 \cdot A_1 \right) - \left(Iy_2 + b_2^2 \cdot A_2 \right) = \frac{7^3 \cdot 9}{48} - \frac{4^3 \cdot 3}{12} = 48,31 \text{ cm}^4.$$

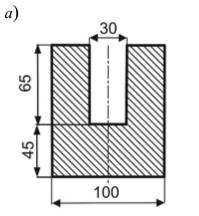
Центробежный момент инерции $Ix_C y_C = 0$.

Главные центральные моменты инерции

$$I_{\text{max}} = Ix_C = 89,13 \text{ cm}^4; I_{\text{min}} = Iy_C = 48,31 \text{ cm}^4.$$

Ось x_C проходит через плоскость максимальной жесткости, а ось y_C – минимальной.

Пример 2 (для самостоятельного решения) — Для сечений, изображенных на рисунке 3.3, определить главные центральные моменты инерции и положение главных центральных осей.



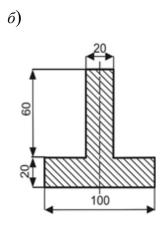


Рисунок 3.3

Контрольные вопросы

- 1 Как определить положение центра тяжести сложного сечения?
- 2 Запишите формулы для определения центральных моментов инерции сложного сечения.
- 3 Запишите формулы для определения главных центральных моментов инерции сложного сечения.

4 Построение эпюр продольных сил

Пример 1 – Для бруса, изображенного на рисунке 4.1, построить эпюру продольных (нормальных) сил.

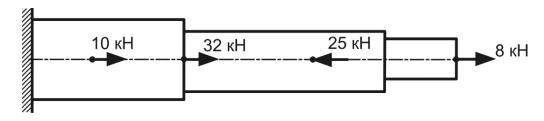


Рисунок 4.1

Решение

Определяем нормальные силы по участкам бруса (рисунок 4.2, a), используя метод сечений [1–4]:

- участок 1: $N_1 = 8$ кH;
- участок 2: $N_2 = 8 25 = -17$ кH;
- участок 3: $N_3 = 8 28 + 32 = 15$ кH;
- участок 4: $N_4 = 8 25 + 32 + 10 = 25$ кH.

По полученным значениям строим эпюру продольных сил (рисунок 4.2, δ).

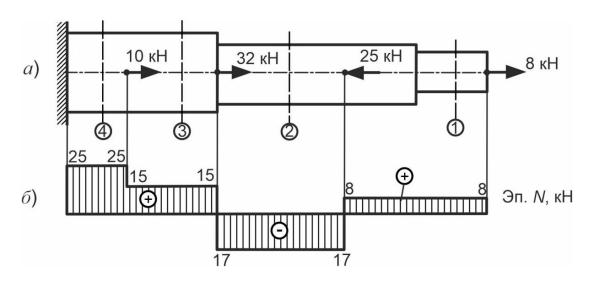


Рисунок 4.2

Пример 2 (для самостоятельного решения) — Для брусьев, изображенных на рисунке 4.3, построить эпюры продольных сил.

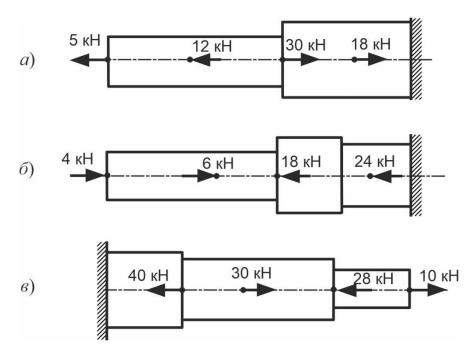


Рисунок 4.3

Контрольные вопросы

- 1 Какой вид нагружения называется осевым растяжением-сжатием?
- 2 Какие внутренние силовые факторы возникают при растяжении-сжатии?
- 3 Запишите правило знаков для определения продольной силы.
- 4 Как определить величину продольной силы в произвольном сечении бруса?
- 5 Сформулируйте основные правила контроля построения эпюр продольных сил.

5 Построение эпюр крутящих моментов

Пример 1 – Для бруса (вала), изображенного на рисунке 5.1, построить эпюру крутящих моментов.

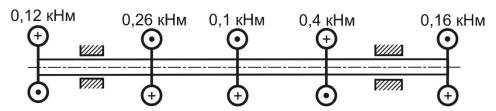


Рисунок 5.1

Решение

Разбиваем брус на участки (рисунок 5.2, а). Определяем крутящие моменты по участкам вала, используя метод сечений:

- участок 1: $M\kappa_1 = 0.12$ кH·м;
- участок 2: $M\kappa_2 = 0.12 0.26 = -0.14$ кH·м;
- участок 3: $M\kappa_3 = 0,12-0,26-0,1 = -0,24$ кН·м;
- участок 4: $M\kappa_4 = 0,12-0,26-0,1+0,4=0,16$ кН·м.

По полученным значениям строим эпюру крутящих моментов (рисунок 5.2, δ).

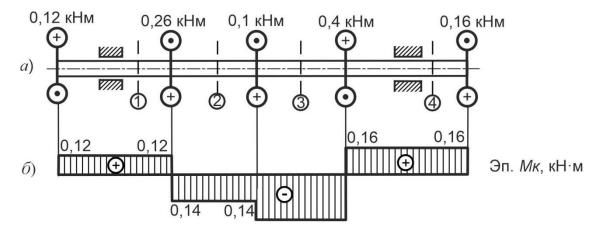


Рисунок 5.2

Пример **2** (*для самостоятельного решения*) — Для брусьев, изображенных на рисунке 5.3, построить эпюры крутящих моментов.

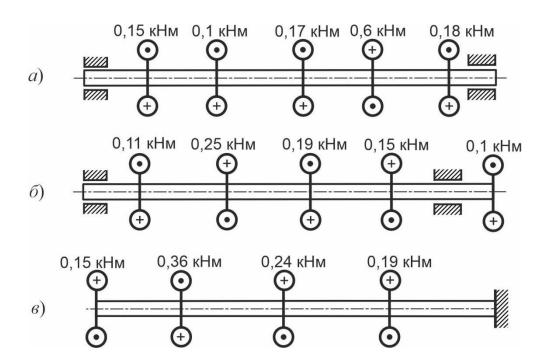


Рисунок 5.3

Контрольные вопросы

- 1 Какой вид нагружения называется кручением?
- 2 Какие внутренние силовые факторы возникают при кручении?
- 3 Как определить величину крутящего момента в произвольном сечении бруса?
- 4 Сформулируйте основные правила контроля построения эпюр крутящих моментов.

6 Построение эпюр поперечных сил и изгибающих моментов для прямого бруса

Пример 1 – Для бруса (балки), изображенного на рисунке 6.1, построить эпюры поперечных сил и изгибающих моментов.

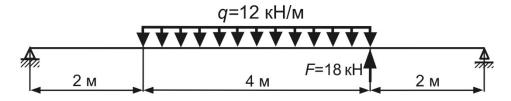


Рисунок 6.1

Решение

Определяем опорные реакции заданной балки (рисунок 6.2, a):

$$\sum M_B = 0; -R_A \cdot 8 + 12 \cdot 4 \cdot 4 - 18 \cdot 2 = 0; \quad R_A = \frac{12 \cdot 4 \cdot 4 - 18 \cdot 2}{8} = 19,5 \text{ kH};$$

$$\sum M_A = 0; \ R_B \cdot 8 - 12 \cdot 4 \cdot 4 + 18 \cdot 6 = 0; \ R_B = \frac{12 \cdot 4 \cdot 4 - 18 \cdot 6}{8} = 10,5 \text{ kH}.$$

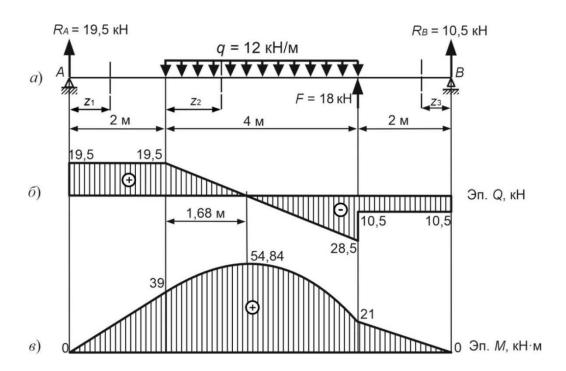


Рисунок 6.2

Проверка правильности расчета реакций из условия:

$$\sum Y = 0$$
; 19,5-12·4+18+10,5=0.

Разбиваем балку на три участка. Используя метод сечений, для каждого из участков записываем выражения для определения поперечной силы Q и изгибающего момента M. Расчет значений поперечных сил и изгибающих моментов выполняем для характерных сечений балки.

Участок 1: $0 \le z_1 \le 2$ м.

$$Q_1 = 19,5 \text{ kH}; M_1 = 19,5 \cdot z_1;$$

$$z_1 = 0; M_1 = 0;$$

$$z_1 = 2 \text{ m}; M_1 = 19,5 \cdot 2 = 39 \text{ kH·m}.$$

Участок 2: $0 \le z_2 \le 4$ м.

$$Q_2 = 19,5 - 12 \cdot z_2; M_2 = 19,5 \cdot (2 + z_2) - 12 \cdot \frac{z_2^2}{2};$$

 $z_2 = 0; Q_2 = 19,5 \text{ kH}; M_2 = 19,5 \cdot 2 = 39 \text{ kH·m};$

$$z_2 = 4 \text{ м}; \ Q_2 = 19,5 - 12 \cdot 4 = -28,5 \text{ кH}; \ M_2 = 19,5 \cdot \left(2 + 4\right) - 12 \cdot \frac{4^2}{2} = 21 \text{ кH·м}.$$
 Экстремум: $Q_2 = 19,5 - 12 \cdot z_2 = 0$;
$$z_2 = \frac{19,5}{12} = 1,68 \text{ м}; \ M_2 = 54,84 \text{ кH·м}.$$

Участок 3: $0 \le z_3 \le 2$ м.

$$Q_3 = -10,5$$
 кH; $M_3 = 10,5 \cdot z_3$;
$$z_3 = 0; \ M_3 = 0;$$

$$z_3 = 2$$
м; $M_3 = 10,5 \cdot 2 = 21$ кH·м.

По полученным результатам строим эпюры поперечных сил Q и изгибающих моментов M (рисунок 6.2, δ , ϵ).

Пример 2 – Для балок, изображенных на рисунке 6.3, построить эпюры поперечных сил и изгибающих моментов.

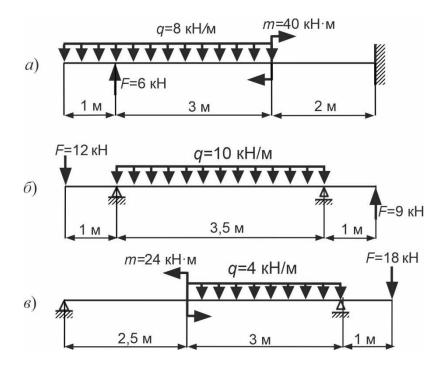


Рисунок 6.3

Контрольные вопросы

- 1 Какие внутренние силовые факторы возникают в поперечном сечении балки при изгибе?
 - 2 Какое правило знаков принято для поперечной силы?
 - 3 Какое правило знаков принято для изгибающего момента?
 - 4 Как вычисляется поперечная сила в произвольном сечении балки?
 - 5 Как вычисляется изгибающий момент в произвольном сечении балки?
 - 6 Как формулируется теорема Журавского?
- 7 Какая дифференциальная зависимость существует между поперечной силой и интенсивностью распределенной нагрузки?
- 8 Какая дифференциальная зависимость существует между изгибающим моментом и интенсивностью распределенной нагрузки?
- 9 Какая линия очерчивает эпюру изгибающего момента, если на рассматриваемом участке действует распределенная нагрузка?
- 10 Какая линия очерчивает эпюру поперечной силы, если на рассматриваемом участке действует распределенная нагрузка?
 - 11 В каком случае выполняется исследование на экстремум?
- 12 Будет ли изменение на эпюре поперечных сил в сечении, где приложена сосредоточенная сила? Как при этом изменится сосредоточенный момент?
- 13 Будет ли изменение на эпюре изгибающих моментов в сечении, где приложен сосредоточенный момент? Как при этом изменится сосредоточенная сила?
- 14 Какой линией очерчивается эпюра поперечных сил, если на участке действует сосредоточенная сила?

7 Расчеты на прочность при растяжении-сжатии прямого стержня

Пример 1 – Определить площадь поперечного сечения чугунного стержня (рисунок 7.1, a). Для материала стержня $[\sigma]_{CK} = 50\,$ МПа , $[\sigma]_{P} = 20\,$ МПа .

Решение

Разбиваем брус на участки (см. рисунок 7.1, a). Строим эпюру нормальных сил (рисунок 7.1, δ).

Определяем напряжения на участках бруса:

$$\sigma_{1} = \frac{N_{1}}{A_{1}} = -\frac{12}{A}; \sigma_{2} = \frac{N_{2}}{A_{2}} = -\frac{18}{A};$$

$$\sigma_{3} = \frac{N_{3}}{A_{3}} = \frac{18}{1,5 \cdot A} = \frac{12}{A}; \sigma_{4} = \frac{N_{4}}{A_{4}} = -\frac{42}{2 \cdot A} = -\frac{21}{A}.$$

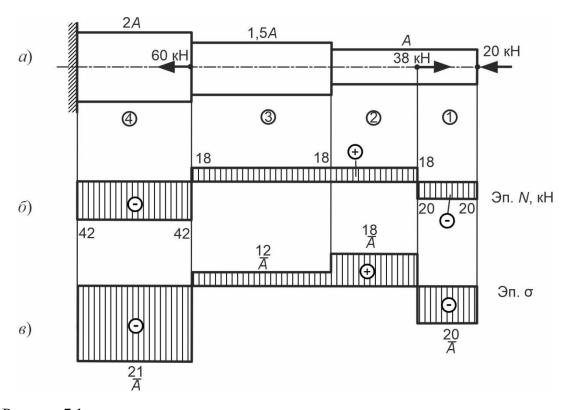


Рисунок 7.1

По полученным значениям строим эпюру нормальных напряжений (рисунок 7.1, θ).

Выполняем расчет площади поперечного сечения исходя из свойств материала заданного бруса. Отдельно рассматриваем растянутую и сжатую области эпюры нормальных напряжений [1–4].

Условие прочности на сжатие

$$\left|\sigma_{\max}\right|_{C\!K} \le \left[\sigma\right]_{C\!K}; \ \left|\sigma_{\max}\right|_{C\!K} = \left|\frac{21}{A}\right| \le \left[\sigma\right]_{C\!K} = 280 \text{ M}\Pi a.$$

Откуда площадь поперечного сечения

$$A_{CK} \ge \frac{21 \cdot 10^3}{280 \cdot 10^6} = 7,5 \cdot 10^{-5} \text{ m}^2 = 0,075 \text{ cm}^2.$$

Условие прочности на растяжение

$$\left|\sigma_{\text{max}}\right|_P = \left|\frac{18}{A}\right| \le \left[\sigma\right]_P = 50 \text{ M}\Pi\text{a}.$$

Откуда площадь поперечного сечения

$$A_P \ge \frac{18 \cdot 10^3}{50 \cdot 10^6} = 3,6 \cdot 10^{-4} \text{ m}^2 = 3,6 \text{ cm.}^2$$

Примем $A = 3.6 \text{ см}^2$.

Пример 2 – Определить допускаемую нагрузку на стальной брус (рисунок 7.2, a). Допускаемое напряжение $[\sigma]$ = 160 МПа.

Решение

Разбиваем брус на участки (см. рисунок 7.2, a). Строим эпюру нормальных сил (рисунок 7.2, δ).

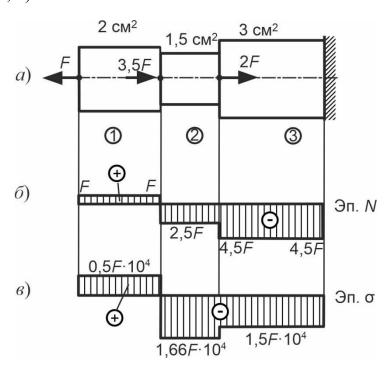


Рисунок 7.2

Определяем напряжения на участках бруса:

$$\sigma_{1} = \frac{N_{1}}{A_{1}} = \frac{F}{2 \cdot 10^{-4}} = 0,5F \cdot 10^{4};$$

$$\sigma_{2} = \frac{N_{2}}{A_{2}} = -\frac{2,5F}{1,5 \cdot 10^{-4}} = -1,66F \cdot 10^{4};$$

$$\sigma_{3} = \frac{N_{3}}{A_{3}} = -\frac{4,5F}{3 \cdot 10^{-4}} = 1,5F \cdot 10^{4}.$$

По полученным значениям строим эпюру нормальных напряжений (рисунок 7.2, θ).

Из эпюры нормальных напряжений (см. рисунок 7.2, *в*) видно, что опасным является второй участок. Условие прочности имеет вид

$$\left|\sigma_{\text{max}}\right| = \left|1,66F \cdot 10^4\right| \le \left[\sigma\right].$$

Допустимая нагрузка из условия прочности

$$[F] \le \frac{[\sigma]}{1,66 \cdot 10^4} = \frac{160 \cdot 10^6}{1,66 \cdot 10^4} = 9639 \text{ H}.$$

Пример 3 (для самостоятельного решения) — Определить допускаемую нагрузку на стержень, изображенный на рисунке 7.3. Допускаемые напряжения $[\sigma]_P = 28 \text{ M}\Pi \text{a}, \ [\sigma]_{CK} = 170 \text{ M}\Pi \text{a}.$

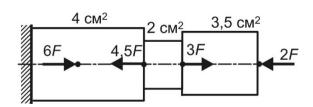


Рисунок 7.3

Контрольные вопросы

- 1 Какой вид нагружения называется осевым растяжением-сжатием?
- 2 Какие внутренние силовые факторы возникают при растяжении-сжатии?
- 3 Запишите правило знаков для определения продольной силы.
- 4 Как определить величину продольной силы в произвольном сечении бруса?
 - 5 Запишите формулу для расчета нормальных напряжений.
 - 6 Запишите условие прочности при осевом растяжении-сжатии.
 - 7 Перечислите задачи, решаемые из условия прочности.

8 Расчеты на жесткость при растяжении-сжатии прямого стержня

Пример 1 – Проверить прочность стального стержня, изображенного на рисунке 8.1. Допускаемое напряжение $[\sigma]$ = 160 МПа. Построить эпюру перемещений. Определить полное удлинение (укорочение) стержня.

Решение

Разбиваем брус на участки (см. рисунок 8.1, a). Строим эпюру нормальных сил (см. рисунок 8.1, δ).

Определяем напряжения на участках бруса. По полученным значениям строим эпюру нормальных напряжений (см. рисунок 8.1, θ).

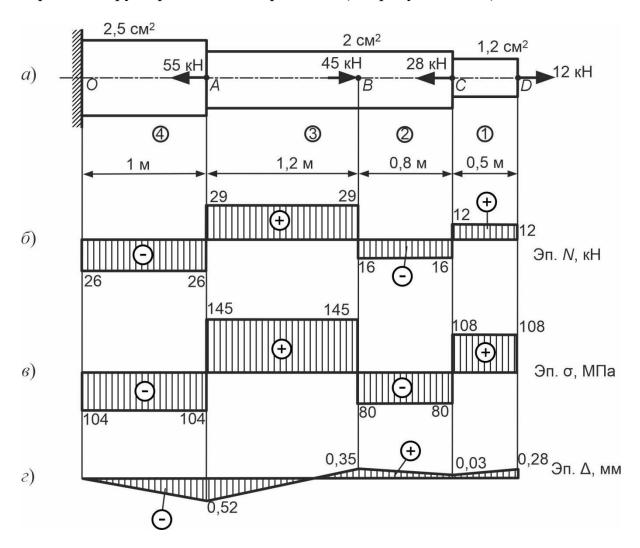


Рисунок 8.1

Определяем абсолютные удлинения (укорочения) участков бруса, используя закон Гука [1, 2]. В соответствии с таблицей Б.1 модуль продольной упругости материала $E=2\cdot 10^5$ МПа:

$$\Delta l_1 = \frac{N_1 \cdot l_1}{E \cdot A_1} = \frac{12 \cdot 10^3 \cdot 0.5}{2 \cdot 10^{11} \cdot 1.2 \cdot 10^{-4}} = 2.5 \cdot 10^{-4} \text{ m} = 0.25 \text{ mm};$$

$$\Delta l_2 = \frac{N_2 \cdot l_2}{E \cdot A_2} = -\frac{16 \cdot 10^3 \cdot 0.8}{2 \cdot 10^{11} \cdot 2 \cdot 10^{-4}} = -3.2 \cdot 10^{-4} \text{ m} = -0.32 \text{ mm};$$

$$\Delta l_3 = \frac{N_3 \cdot l_3}{E \cdot A_3} = \frac{29 \cdot 10^3 \cdot 1.2}{2 \cdot 10^{11} \cdot 2 \cdot 10^{-4}} = 8.7 \cdot 10^{-4} \text{ m} = 0.87 \text{ mm};$$

$$\Delta l_4 = \frac{N_4 \cdot l_4}{E \cdot A_4} = -\frac{26 \cdot 10^3 \cdot 1}{2 \cdot 10^{11} \cdot 2.5 \cdot 10^{-4}} = -5.2 \cdot 10^{-4} \text{ m} = -0.52 \text{ mm}.$$

Определяем перемещения характерных сечений бруса [1-4]:

$$\begin{split} \Delta_O &= 0 \ ; \\ \Delta_A &= \Delta l_4 = -0,52 \ \text{mm}; \\ \Delta_B &= \Delta l_4 + \Delta l_3 = \Delta_A + \Delta l_3 = -0,52 + 0,87 = 0,35 \ \text{mm}; \\ \Delta_C &= \Delta l_4 + \Delta l_3 + \Delta l_2 = \Delta_B + \Delta l_2 = 0,35 - 0,32 = 0,03 \ \text{mm}; \\ \Delta_D &= \Delta l_4 + \Delta l_3 + \Delta l_2 + \Delta l_1 = \Delta_C + \Delta l_1 = 0,03 + 0,25 = 0,28 \ \text{mm}. \end{split}$$

По полученным значениям строим эпюру перемещений (см. рисунок 8.1, ε). Из эпюры перемещений определяем величину полного удлинения стержня:

$$\Delta l = \Delta_D = 0,28$$
 mm.

Пример 2 (для самостоятельного решения) – Построить эпюру перемещений для стального стержня (рисунок 8.2).

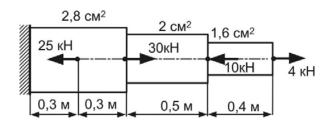
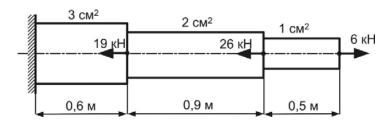


Рисунок 8.2

Пример 3 (для самостоятельного решения) – Проверить жесткость стального стержня, изображенного на рисунке 8.3. Для расчета принять $[\Delta] = 3$ мм.



Контрольные вопросы

- 1 Дайте определение относительной и абсолютной деформаций.
- 2 Запишите выражение для определения жесткости при растяжении (сжатии).
- 3 Что такое модуль продольной упругости?
- 4 Запишите выражение для определения абсолютной продольной деформации при растяжении (сжатии).
- 5 Запишите выражение для определения относительной продольной деформации при растяжении (сжатии).
- 6 Запишите выражение для определения относительной поперечной деформации при растяжении (сжатии).
 - 7 Запишите формулу для определения коэффициента Пуассона.
 - 8 Сформулируйте условие жесткости при растяжении-сжатии.

9 Расчеты на прочность и жесткость при растяжении-сжатии статически неопределимых систем

Пример 1 – Проверить прочность стального стержень (рисунок 9.1). Допускаемое напряжение $[\sigma]$ = 160 МПа.

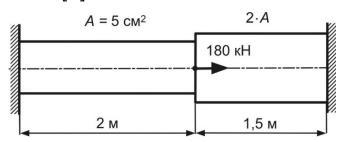


Рисунок 9.1

Решение

Уравнение статики для заданного стержня (рисунок 9.2, a)

$$\sum Z = -R_C + F - R_B = 0.$$

Стержень один раз статически неопределим. Чтобы рассчитать реакцию одной из связей, дополнительно к уравнению статики записываем уравнение деформаций (уравнение совместности деформаций) [1–4]: $\Delta l = 0$.

Для составления уравнения деформаций используем принцип независимости действия сил.

Стержень освобождаем от жесткой заделки в точке C.

Сначала данный стержень нагружаем только заданной нагрузкой (рису нок 9.2, δ) и строим грузовую эпюру N_F (рисунок 9.2, δ). Затем на стержень будет действовать реакция удаленной связи (рисунок 9.2, ϵ).

Определяем деформацию стержня от заданной нагрузки (см. рисунок 9.2, δ , ϵ):

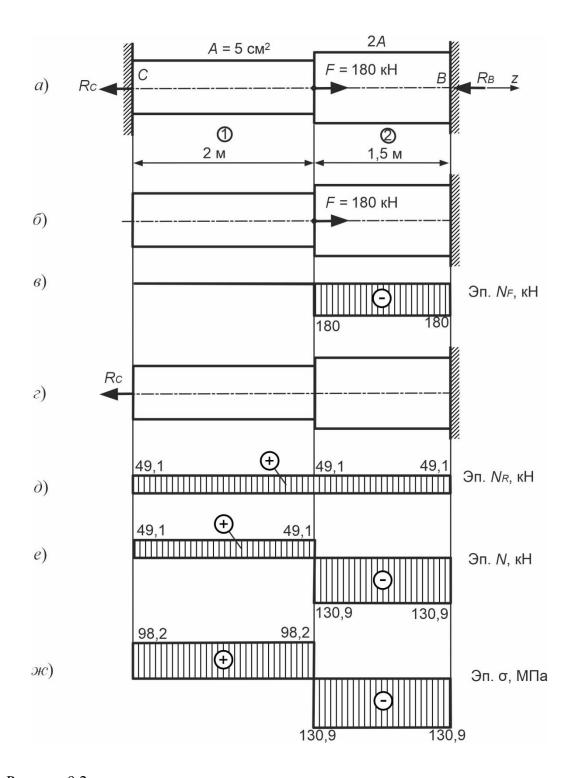
$$\Delta l_F = \sum_{i=1}^n \frac{N_i \cdot l_i}{E_i \cdot A_i} = 0 - \frac{180 \cdot 1,5}{E \cdot 2A} = -\frac{135}{EA}.$$

Деформация стержня от действия реакции (см. рисунок 9.2, г)

$$\Delta l_{R} = \sum_{i=1}^{n} \frac{N_{i} \cdot l_{i}}{E_{i} \cdot A_{i}} = \frac{R_{C} \cdot 2}{E \cdot A} - \frac{R_{C} \cdot 1, 5}{E \cdot 2A} = \frac{2,75R_{C}}{EA}.$$

Тогда уравнение деформаций примет вид

$$\Delta l = \Delta l_F + \Delta l_R = -\frac{135}{EA} + \frac{2,75R_C}{EA} = 0$$
; $R_C = 49,1$ kH.



Эпюра нормальных сил N_R от действия найденной реакции изображена на рисунке 9.2, ∂ . Суммируя эпюры N_R и N_F [3], определяем ординаты окончательной эпюры нормальных сил N (рисунок 9.2, e). Рассчитываем нормальные напряжения и строим эпюру нормальных напряжений σ (рисунок 9.2, \mathcal{M}).

Выполняем проверку прочности:

$$\left|\sigma_{\text{max}}\right| \le \left[\sigma\right]; \ \left|\sigma_{\text{max}}\right| = 130,9 \ \text{M}\Pi\text{a} < \left[\sigma\right] = 160 \ \text{M}\Pi\text{a}.$$

Прочность стержня обеспечена.

Пример 2 – Определить допускаемую нагрузку на ступенчатый стальной стержень (рисунок 9.3). Допускаемое напряжение $[\sigma]$ = 160 МПа.

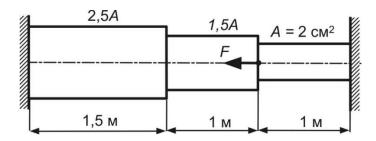


Рисунок 9.3

Контрольные вопросы

- 1 Какие системы являются статически неопределимыми?
- 2 Перечислите основные преимущества и недостатки статически неопределимых систем при растяжении (сжатии).
- 3 Какие уравнения используются для определения реакций при растяжении (сжатии) статически неопределимых систем?
- 4 Применим ли принцип независимости действия сил к статически неопределимым системам?
- 5 Запишите условие прочности при осевом растяжении-сжатии статически неопределимых систем.
 - 6 Перечислите задачи, решаемые из условия прочности.

10 Анализ линейного и плоского напряженного состояния в точке. Определение главных напряжений и главных площадок при плоском напряженном состоянии

Пример 1 – В опасной точке нагруженной детали напряженное состояние оказалось таким, как показано на рисунке 10.1. Определить величину и направление главных площадок.

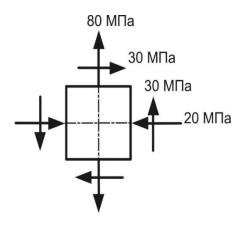


Рисунок 10.1

Решение

Действующие напряжения (рисунок 10.2) [4]

$$σ_X = -20$$
 MΠa; $σ_Y = 80$ MΠa; $τ_{XY} = 30$ ΜΠa.

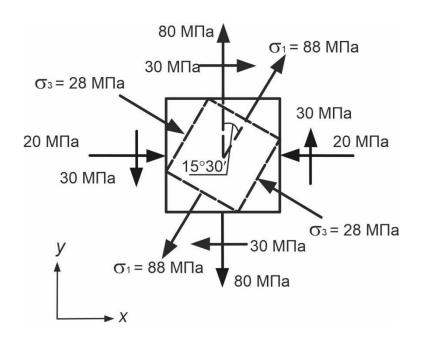


Рисунок 10.2

Главные напряжения [4]

$$\sigma_{_{2\pi}} = \frac{\sigma_{_{X}} + \sigma_{_{Y}}}{2} \pm \frac{1}{2} \sqrt{\left(\sigma_{_{X}} - \sigma_{_{Y}}\right)^{2} + 4 \cdot \tau_{_{XY}}^{2}} = \frac{-20 + 80}{2} \pm \frac{1}{2} \sqrt{\left(-20 - 80\right)^{2} + 4 \cdot 30^{2}} =$$

$$= 30 \pm 58.$$

Главные напряжения распределяются в следующей зависимости [4]:

$$\sigma_1 > \sigma_2 > \sigma_3$$
.

Следовательно, $\sigma_1 = 88\,$ МПа; $\sigma_2 = 0$; $\sigma_3 = -28\,$ МПа.

Положение главных площадок определяется углом поворота:

$$tg\alpha_O = \frac{2 \cdot \tau_{XY}}{\sigma_X - \sigma_Y} = \frac{2 \cdot 30}{-20 - 80} = -0.6; \quad 2\alpha_O = -31^\circ; \quad \alpha_O = -15^\circ 30'.$$

Положение главных площадок и направление главных напряжений показаны на рисунке 10.2.

Пример 2 (для самостоятельного решения) — В опасных точках нагруженных деталей напряженное состояние оказалось таким, как показано на рисунке 10.3, a, δ . Определить величину и направление главных площадок.

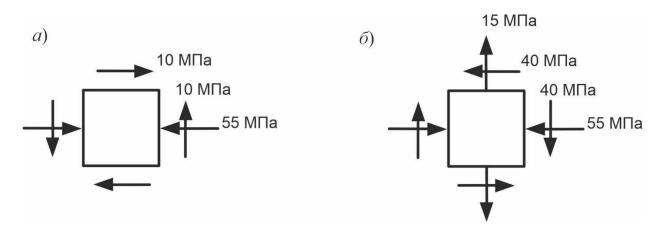


Рисунок 10.3

Контрольные вопросы

- 1 Дайте определение напряженно-деформированному состоянию.
- 2 Какие напряжения называют главными?
- 3 Какие площадки называют главными?
- 4 Перечислите виды напряженного состояния.
- 5 Запишите формулу для определения величин главных напряжений при плоском напряженном состоянии.
- 6 Как определить направление главных площадок при плоском напряженном состоянии?
- 7 Как определить напряжения на наклонных площадках при линейном напряженном состоянии?

11 Определение главных напряжений и расчеты по теориям прочности

Пример 1 — В опасной точке нагруженной детали напряженное состояние оказалось таким, как показано на рисунке 11.1. Проверить прочность по третьей теории прочности, если $[\sigma] = 160 \text{ M}\Pi a$.

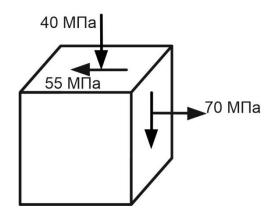


Рисунок 11.1

Решение

Действующие напряжения (рисунок 11.2) [4]

$$σ_X = 70$$
 MΠa; $σ_Y = -40$ MΠa; $τ_{XY} = -55$ MΠa.

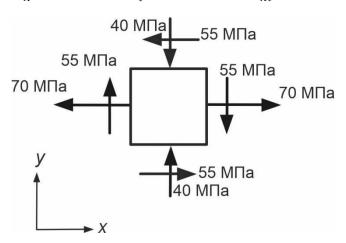


Рисунок 11.2

Главные напряжения [4]

$$\sigma_{\text{en}} = \frac{\sigma_{\text{X}} + \sigma_{\text{y}}}{2} \pm \frac{1}{2} \sqrt{\left(\sigma_{\text{X}} - \sigma_{\text{y}}\right)^2 + 4 \cdot \tau_{\text{XY}}^2} = \frac{70 - 40}{2} \pm \frac{1}{2} \sqrt{\left(70 + 40\right)^2 + 4 \cdot \left(-55\right)^2} = 15 \pm 78.$$

Главные напряжения распределяются в следующей зависимости [4]:

$$\sigma_1 > \sigma_2 > \sigma_3$$
.

Следовательно, $\sigma_1 = 93\,$ МПа; $\sigma_2 = 0\,; \ \sigma_3 = -63$ МПа.

Условие прочности по третьей теории прочности [4]

Прочность обеспечена.

Пример 2 (для самостоятельного решения) — В опасной точке нагруженной детали напряженное состояние оказалось таким, как показано на рисунке 11.3. Проверить прочность по теории прочности Мора, если $\sigma_B^{CK} = 480\,\mathrm{MHz}$, $\sigma_B^P = 270\,\mathrm{MHz}$.

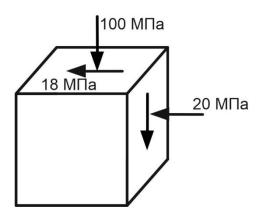


Рисунок 11.3

Контрольные вопросы

- 1 Что такое эквивалентное напряжение?
- 2 Перечислите гипотезы прочности.
- 3 Перечислите теории прочности.
- 4 Какие из теорий применимы для оценки прочности стальных образцов?
- 5 Сформулируйте теорию наибольших касательных напряжений.
- 6 Сформулируйте энергетическую теорию прочности.
- 7 Сформулируйте теорию прочности Мора.
- 8 Для каких материалов применятся проверка по теории прочности Мора?

12 Расчеты на прочность при прямом поперечном изгибе: проверочный, проектировочный расчет и определение допускаемой нагрузки

Пример 1 – Проверить прочность балки, изображенной на рисунке 12.1, a. Допускаемое напряжение $[\sigma]$ = 160 МПА.

Решение

Определяем опорные реакции заданной балки (см. рисунок 12.1, a).

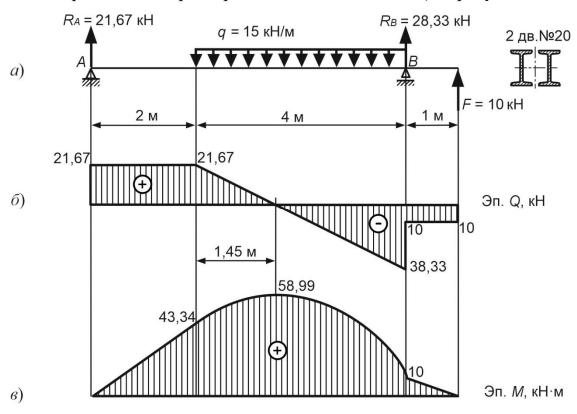


Рисунок 12.1

Строим эпюры поперечных сил Q (рисунок 12.1, δ) и изгибающих моментов M (рисунок 12.1, δ).

Условие прочности при изгибе [1-4]

$$\sigma_{\max} = \frac{M_{\max}}{W_{v}} \le [\sigma].$$

Из эпюры изгибающих моментов определяем опасное сечение, в котором $M_{\rm max} = 58,99 \ {\rm kH\cdot m}$ (см. рисунок 12.1, в).

Для заданного двутавра из таблиц ГОСТ 8239—89 выписываем значение осевого момента сопротивления: $W_X^{\mathcal{A}_g} = 184 \, \mathrm{cm}^3$. Осевой момент сопротивления сечения, состоящего из двух двутавров,

$$W_X = 2 \cdot W_X^{A_6} = 2 \cdot 184 = 368 \text{ cm}^3.$$

Тогда условие прочности имеет вид

$$\sigma_{\text{max}} = \frac{58,98 \cdot 10^3}{368 \cdot 10^{-6}} = 0,1603 \cdot 10^9 \,\text{\Pia} = 160,3 \,\text{M} \,\text{\Pia} > \left[\sigma\right] = 160 \,\text{M} \,\text{\Pia}.$$

Процент перенапряжения [3]

$$\delta = \frac{\sigma_{\text{max}} - [\sigma]}{[\sigma]} \cdot 100 \% \le 5 \%,$$

$$\delta = \frac{160,3-160}{160} \cdot 100 \% = 0,13 \% < 5 \%.$$

Данное перенапряжение не является опасным. Прочность балки обеспечена.

Пример 2 — Определить размеры поперечного сечения балки, изображенной на рисунке 12.2, a. Допускаемое напряжение $[\sigma]$ = 160 МПа.

Решение

Строим эпюры поперечных сил Q (рисунок 12.2, δ) и изгибающих моментов M (рисунок 12.2, ϵ).

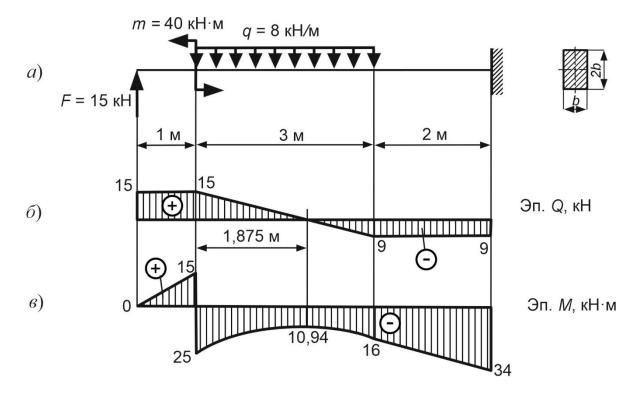


Рисунок 12.2

Из эпюры изгибающих моментов определяем опасное сечение, в котором $|M_{\rm max}|$ = 34 кН·м (см. рисунок 12.2, ϵ).

Определяем расчетный момент сопротивления заданного сечения из условия прочности при изгибе:

$$W_X \ge \frac{M_{\text{max}}}{\lceil \sigma \rceil} = \frac{34 \cdot 10^3}{160 \cdot 10^6} = 0,2125 \cdot 10^{-3} \text{ m}^3.$$

С другой стороны, в соответствии с таблицей А.1

$$W_{X} = \frac{b \cdot h^{2}}{6} = \frac{b \cdot (2b)^{2}}{6} = \frac{2}{3} \cdot b^{3} = 0,2125 \cdot 10^{-3} \text{ m}^{3}.$$

Тогда ширина сечения составит

$$b = \sqrt[3]{\frac{3 \cdot 0,2125 \cdot 10^{-3}}{2}} = 0,068 \text{ m} = 68 \text{ mm}.$$

Высота сечения

$$h = 2 \cdot b = 2 \cdot 68 = 136$$
 MM.

Пример 3 (для самостоятельного решения) — Проверить прочность балки (рисунок 12.3). Допускаемое напряжение $[\sigma] = 160$ МПа.

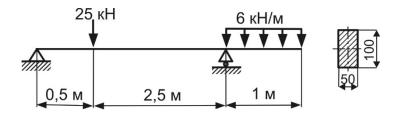


Рисунок 12.3

Пример 4 (для самостоятельного решения) — Определить диаметр балки (рисунок 12.4) при $[\sigma] = 180 \text{ M}\Pi a$.

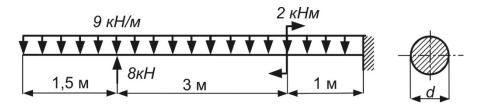


Рисунок 12.4

Контрольные вопросы

- 1 Какой вид деформаций называется изгибом?
- 2 В каком случае имеет место прямой изгиб?
- 3 Какие внутренние силовые факторы возникают при чистом изгибе?
- 4 Какие внутренние силовые факторы возникают при поперечном изгибе?
- 5 Что такое нейтральная ось?
- 6 Как расположены нейтральная ось и нейтральная линия?
- 7 Какие напряжения возникают при чистом изгибе?
- 8 Какие напряжения возникают при поперечном изгибе?
- 9 Какая формула используется для определения нормальных напряжений при изгибе?
- 10 В каких точках по высоте поперечного сечения возникают наибольшие нормальные напряжения?
- 11 По какому закону изменяются нормальные напряжения по высоте поперечного сечения?
- 12 Как определяют знак нормальных напряжений при изгибе? Зависит ли знак нормального напряжения от знака координаты рассматриваемой точки?
 - 13 Запишите условие прочности по нормальным напряжениям.
- 14 Как выбирается опасное сечение для проверки прочности по нормальным напряжениям?
- 15 Сформулируйте задачи, решаемые с использованием условия прочности по нормальным напряжениям.
- 16 Какая формула используется при определении касательных напряжений при поперечном изгибе?
- 17 В каких точках по высоте сечения возникают наибольшие касательные напряжения?

13 Расчет линейных и угловых перемещений при прямом поперечном изгибе

Пример 1 – Определить прогиб сечения *D* стальной балки (рисунок 13.1).

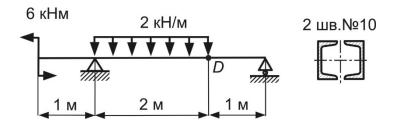


Рисунок 13.1

Решение

Определяем опорные реакции заданной балки (рисунок 13.2):

$$\sum M_A = 0; \quad -R_B \cdot 3 - 2 \cdot 2 \cdot 1 + 6 = 0; \quad R_B = 0,67 \text{ kH};$$

$$\sum M_B = 0; \quad -R_A \cdot 3 + 2 \cdot 2 \cdot 2 + 6 = 0; \quad R_A = 4,67 \text{ kH}.$$

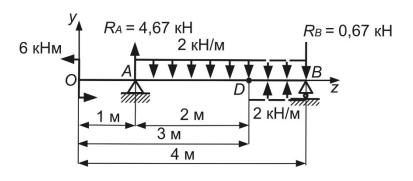


Рисунок 13.2

Проверка правильности расчета реакций из условия:

$$\sum Y = 0$$
; 4,67-4-0,67 = 0.

Размещаем начало координат осей *zy* в крайнее левое сечение рассматриваемой балки. Заданную распределенную нагрузку продлеваем до конца балки и прикладываем компенсирующую нагрузку (см. рисунок 13.2).

Уравнение прогибов по методу начальных параметров для заданной балки

$$EIy_z = EIy_O + EI\Theta_O \cdot z - 6 \cdot \frac{\left(z - 0\right)^2}{2} + 4,67 \cdot \frac{\left(z - 1\right)^3}{6} - 2 \cdot \frac{\left(z - 1\right)^4}{24} + 2 \cdot \frac{\left(z - 3\right)^4}{24} \,.$$

В данном случае начало координат находится на консоли. Следовательно, определению подлежат оба начальных параметра. Их величины рассчитываем из условий закрепления балки. Для этого составляем уравнения метода начальных параметров для опорных сечений:

$$z = 1 \text{ m}; \ EIy_A = EIy_O + EI\Theta_O \cdot 1 - 6 \cdot \frac{\left(z - 0\right)^2}{2} = 0;$$

$$z = 4 \text{ m}; \ EIy_B = EIy_O + EI\Theta_O \cdot 4 - 6 \cdot \frac{\left(4 - 0\right)^2}{2} + 4,67 \cdot \frac{\left(4 - 1\right)^3}{6} - 2 \cdot \frac{\left(4 - 1\right)^4}{24} + 2 \cdot \frac{\left(4 - 3\right)^4}{24} = 0.$$

Путем совместного решения уравнений определяем начальный прогиб $EIy_O = -7,22~\mathrm{kH\cdot m^3}$ и начальный угол поворота $EI\Theta_O = 10,22~\mathrm{kH\cdot m^2}$.

Прогиб в сечении D

$$z = 3 \text{ m}; \ EIy_D = -7,22 + 10,22 \cdot 3 - 6 \cdot \frac{3^2}{2} + 4,67 \cdot \frac{(3-1)^3}{6} - 2 \cdot \frac{\left(4-1\right)^4}{24} = -4,08 \text{ kH·m}^3.$$

Модуль продольной упругости стальной балки из таблицы Б.1 $E=2\cdot 10^5$ МПа= $=2\cdot 10^{11}$ Па.

Для швеллера № 10 из таблиц ГОСТ 8240—97 осевой момент инерции $I_{_X}^{_{I\!I\!I\!I\!G}}=174~\mathrm{cm}^4.$

Осевой момент инерции сечения, состоящего из двух швеллеров,

$$I_X = 2 \cdot I_X^{III6} = 2 \cdot 174 = 348 \text{ cm}^4.$$

$$y_D = \frac{EIy_D}{E \cdot Ix} = \frac{-4.08 \cdot 10^3}{2 \cdot 10^{11} \cdot 348 \cdot 10^{-8}} = -5.86 \cdot 10^{-3} \text{ M} = -5.86 \text{ MM}.$$

Пример 2 – Определить прогиб сечения стальной балки (рисунок 13.3).

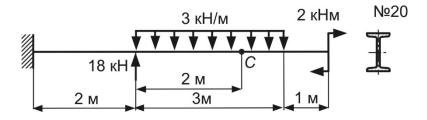


Рисунок 13.3

Решение

Определяем опорные реакции в заделке:

$$\sum Y = 0; \quad -R_O + 18 - 3 \cdot 3 = 0; \quad R_O = 9 \text{ kH};$$

$$\sum M_O = 18 \cdot 2 - 3 \cdot 3 \cdot 3, 5 - 2 - M_O = 0; \quad M_O = 2,5 \text{ kH} \cdot \text{m}.$$

В начале балки (рисунок 13.4) находится заделка, поэтому начальный прогиб и начальный угол поворота [1–4] $y_{\scriptscriptstyle O}=0$, $\Theta_{\scriptscriptstyle O}=0$.

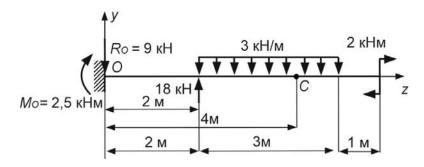


Рисунок 13.4

Уравнение прогиба в точке C по методу начальных параметров

$$EIy_z = EIy_O + EI\Theta_O \cdot z + 2,5 \cdot \frac{\left(z - 0\right)^2}{2} - 9 \cdot \frac{\left(z - 0\right)^3}{6} + 18 \cdot \frac{\left(z - 2\right)^2}{6} - 3 \cdot \frac{\left(z - 2\right)^4}{24};$$

$$z = 4 \text{ m}; \quad EIy_C = 2,5 \cdot \frac{4^2}{2} - 9 \cdot \frac{4^3}{6} + 18 \cdot \frac{\left(4 - 2\right)^2}{6} - 3 \cdot \frac{\left(4 - 2\right)^4}{24} = -54 \text{ kH} \cdot \text{m}^3.$$

Модуль продольной упругости стальной балки из таблицы Б.1 $E=2\cdot 10^5\,\mathrm{M\Pi a}=$ $=2\cdot 10^{11}\,\mathrm{\Pi a}.$

Для заданного двутавра из таблиц ГОСТ 823–89 осевой момент инерции $Ix = 1840 \, \, \mathrm{cm}^4.$

$$y_C = \frac{EIy_C}{E \cdot Ix} = \frac{-54 \cdot 10^3}{2 \cdot 10^{11} \cdot 1840 \cdot 10^{-8}} = -0,015 \text{ M} = -15 \text{ MM}.$$

Пример 3 (для самостоятельного решения) — Для стальных балок, изображенных на рисунке 13.5, определить прогиб в точке C.

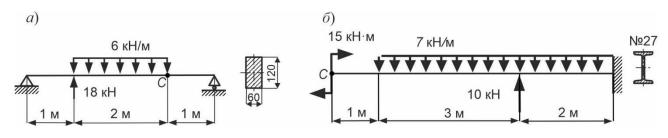


Рисунок 13.5

Контрольные вопросы

- 1 Что представляет собой упругая линия балки?
- 2 Какие перемещения возникают при изгибе балки?
- 3 Что такое прогиб?
- 4 Как определяется кривизна балки при изгибе?
- 5 Запишите дифференциальное уравнение изогнутой оси балки.
- 6 Как определяется жесткость при изгибе?
- 7 Можно ли использовать метод начальных параметров при определении деформаций для балок переменной жесткости?
- 8 Как необходимо расположить начало координат произвольных осей при расчете перемещений по методу начальных параметров?
- 9 Запишите уравнение метода начальных параметров для определения прогиба в произвольном сечении.
- 10 Запишите уравнение метода начальных параметров для определения угла поворота в произвольном сечении.
- 11 Какие внешние нагрузки включают в уравнения при расчете перемещений по методу начальных параметров?
 - 12 Что такое начальные параметры?

- 13 Чему равны начальный прогиб и начальный угол поворота, если на левом конце балки расположена заделка?
- 14 Чему будет равен начальный прогиб, если левый конец балки шарнирно закреплен? Как в этом случае определить начальный угол поворота?
 - 15 Сформулируйте условие жесткости при изгибе.

14 Расчеты на прочность и жесткость при кручении прямолинейного бруса круглого поперечного сечения

Пример 1 – Проверить прочность вала (рисунок 14.1, a), если $[\tau] = 60$ МПа.

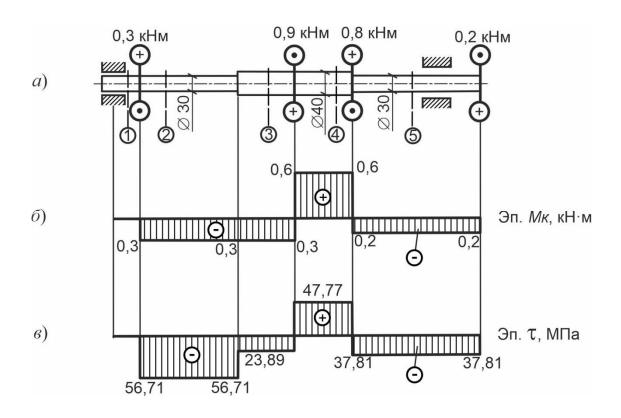
Решение

Разбиваем вал на участки (см. рисунок 14.1, a) и строим эпюру крутящих моментов $M\kappa$ (рисунок 14.1, δ).

Полярные моменты сопротивления круглого сечения, в соответствии с таблицей А.1,

$$W_P^1 = \frac{\pi \cdot d^3}{16} = \frac{3,14 \cdot 3^3}{16} = 5,29 \text{ cm}^3;$$

$$W_P^2 = \frac{\pi \cdot d^3}{16} = \frac{3,14 \cdot 4^3}{16} = 12,56 \text{ cm}^3.$$



Касательные напряжения по участкам вала

$$\begin{split} &\tau_1=0\,;\\ &\tau_2=-\frac{0,3\cdot 10^3}{5,29\cdot 10^{-6}}=-56,71\text{M}\Pi a;\\ &\tau_3=-\frac{0,3\cdot 10^3}{12,56\cdot 10^{-6}}=-23,89\,\text{M}\Pi a;\\ &\tau_4=\frac{0,6\cdot 10^3}{12,56\cdot 10^{-6}}=47,77\,\text{M}\Pi a;\\ &\tau_5=-\frac{0,2\cdot 10^3}{5,29\cdot 10^{-6}}=-37,81\,\text{M}\Pi a. \end{split}$$

Строим эпюру касательных напряжений (рисунок 14.1, *в*). Из эпюры видно, что наиболее нагружен второй участок, на котором возникают большие по величине напряжения. Для этого участка выполняем проверку прочности.

Условие прочности при кручении

$$\tau_{max} \le [\tau]; \ \tau_{max} = 56,71 \ M\Pi a \le \ [\tau] = 60 \ M\Pi a.$$

Условие выполнено, прочность обеспечена.

Пример 2 – Определить диаметр вала (рисунок 14.2, a). $[\tau] = 80$ МПа.

Решение

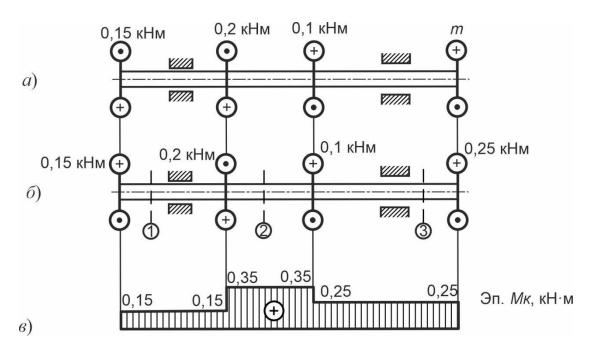


Рисунок 14.2

Определяем величину внешнего момента (см. рисунок 14.2, a) из условия равновесия вала [1–4]:

$$\sum m = 0$$
; $-0.15 - 0.2 + 0.1 + m = 0$; $m = 0.25$ kH·m.

Составляем расчетную схему (рисунок 14.2, δ) и в соответствии с ней строим эпюру крутящих моментов $M\kappa$ (рисунок 14.2, ϵ).

Для вала постоянной жесткости опасным будет участок, на котором возникает наибольший крутящий момент (см. рисунок 14.2, θ): $M\kappa_{\rm max}=0,35~{\rm kH\cdot m}$.

Условие прочности

$$\tau_{\text{max}} = \frac{M\kappa_{\text{max}}}{W_P} = \frac{16 \cdot M\kappa_{\text{max}}}{\pi \cdot d^3} \le [\tau].$$

Расчетное значение диаметра вала

$$d \ge \sqrt[3]{\frac{16 \cdot M \kappa_{\text{max}}}{\pi \cdot [\tau]}} = \sqrt[3]{\frac{16 \cdot 0,35 \cdot 10^3}{3,14 \cdot 80 \cdot 10^6}} = 0,0281 \text{ m} = 28,1 \text{ mm}.$$

Пример 3 (для самостоятельного решения) – Построить эпюру абсолютных углов закручивания заданного вала (рисунок 14.3).

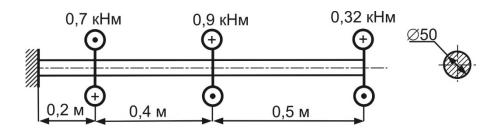


Рисунок 14.3

Пример 4 (для самостоятельного решения) — Определить допускаемую нагрузку на вал, изображенный на рисунке $14.4, [\tau] = 70 \text{ M}\Pi a$.

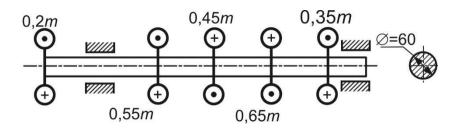


Рисунок 14.4

Контрольные вопросы

- 1 Какой вид нагружения называют кручением?
- 2 Какие внутренние силовые факторы и напряжения возникают при кручении?
- 3 Запишите формулу для определения касательных напряжений при кручении.
- 4 Сформулируйте условие прочности при кручении.
- 5 Как определить абсолютный угол закручивания при кручении?
- 6 Что такое модуль сдвига?
- 7 Запишите закон Гука при сдвиге.

Список литературы

- 1 **Кузменко, И. М.** Механика материалов: учеб. пособие: в 2 ч. / И. М. Кузменко. Могилев: Белорус.- Рос. ун-т, 2020. Ч. 1. 289 с.: ил.
- 2 Сопротивление материалов. Практикум: учеб.-метод. пособие / С. И. Зиневич [и др.]. Минск; М.: Новое знание; ИНФРА-М, 2015. 316 с.: ил.
- 3 **Кривошапко, С. Н.** Сопротивление материалов: учебник и практикум для прикладного бакалавриата / С. Н. Кривошапко. М.: Юрайт, 2016. 413 с.
- 4 **Подскребко, М.** Д. Сопротивление материалов. Основы теории упругости, пластичности, ползучести и механики разрушения: учеб. пособие для вузов / М. Д. Подскребко. Минск: Выш. шк., 2009. 670 с.

Приложение A (справочное)

Таблица А.1– Геометрические характеристики некоторых сечений

Сечение	Площадь сечения	Осевой момент инерции I_X , I_Y	Момент сопротивления W_X , W_Y
h h	$b \cdot h$	$I_{X} = \frac{b \cdot h^{3}}{12};$ $I_{Y} = \frac{h \cdot b^{3}}{12}$	$W_{x} = \frac{b \cdot h^{2}}{6};$ $W_{y} = \frac{h \cdot b^{2}}{6}$
	b^2	$I_X = I_V = \frac{b^4}{12}$	$W_X = W_V = \frac{b^3}{6}$
	$\frac{\pi \cdot d^2}{4}$	$I_{X} = I_{Y} = \frac{\pi \cdot d^{4}}{64};$ $I_{\rho} = \frac{\pi \cdot d^{4}}{32}$	$W_{X} = W_{Y} = \frac{\pi \cdot d^{3}}{32};$ $W_{\rho} = \frac{\pi \cdot d^{3}}{16}$
h	$\frac{b \cdot h}{2}$	$I_{X} = \frac{b \cdot h^{3}}{36}; I_{Y} = \frac{h \cdot b^{3}}{48}$	$W_{XB} = \frac{b \cdot h^2}{24};$ $W_{XH} = \frac{b \cdot h^2}{12};$ $W_{V} = \frac{b \cdot h^2}{24}$
$\frac{1}{3}b$	$\frac{b \cdot h}{2}$	$I_{X} = \frac{b \cdot h^{3}}{36}; I_{Y} = \frac{h \cdot b^{3}}{36}$	$W_{XB} = \frac{b \cdot h^2}{24};$ $W_{XH} = \frac{b \cdot h^2}{12};$ $W_{YP} = \frac{b \cdot h^2}{24};$ $W_{YJI} = \frac{b \cdot h^2}{12}$

Приложение Б (справочное)

Таблица Б.1 — Физико-механические свойства материалов

	Модуль упругости, 10 ⁵ МПа		Коэффициент	Удельный	
Материал	E	G	Пуассона µ	вес γ, кH/м ³	
1	2	3	4	5	
Сталь углеродистая	1,962,06	0,7850,794	0,240,28	78,6	
Сталь легированная	2,062,16	0,7850,794	0,250,30	78,5	
Стальное литье	1,75	_	0,250,33	78,5	
Чугун серый, белый	1,131,57	0,44	0,230,27	72	
Чугун ковкий	1,52	_	_	72	
Латунь холоднотянутая	0,91,0	0,350,37	0,320,42	85	
Алюминий	0,590,69	0,260,37	0,320,36	27	
Сплавы алюминиевые	0,700,72	0,27	0,32	_	
Дюралюминий	0,71	0,270,37		28	
Медь:					
прокатанная	1,1	0,4	0,310,34		
холоднотянутая	1,3	0,49			
литая	0,84				
Бронза:					
катаная	1,15	0,42	0,320,35		
литая	1,05	0,42			
Гранит	0,49			2528	
Мрамор	0,56			2528	
Кирпичная кладка	0,0270,03				
Бетон:					
тяжёлый	0,170,40		0,160,18	20	
на пористых заполнителях	0,030,23		0,160,18		
ячеистый	0,010,10		0,160,18		
при пределе прочности, МПа					
10 МПа	0,1460,196		0,160,18		
15 МПа	0,1640,214		0,160,18		
20 МПа	0,1820,232		0,160,18		
Древесина (сосна, ель):					
вдоль волокон	0,010,12	0,055		5,5	
поперёк волокон	0,0050,01			5,5	
Стекло	0,56	0,22	0,25		

Окончание таблицы Б.1

1	2	3	4	5
Каучук	0,00008	ı	0,47	9,1
Текстолит	0,060,1	ı	_	13,5
Оргстекло	0,030,04	-	0,350,38	11,8
Капрон	0,0140,02	_	_	11,4
Фторопласт-4	0,00470,0085	_	_	2123
Стеклопласты	0,180,35	ı	_	1419

Приложение В (рекомендуемое)

Таблица В.1 – Обозначения и числовые значения кратных и дольных величин

	Числовое		Пример кратных и дольных единиц		
Приставка	значение		Наименование	Сокращенное обозначение	
Мега	106	M	Меганьютон	MH	
Кило	10^{3}	к	Киловатт	кВт	
Санти	10-2	c	Сантиметр	СМ	
Милли	10-3	M	Миллиметр	MM	
Микро	10-6	MK	Микрометр	МКМ	