МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Оборудование и технология сварочного производства»

ПРОЕКТИРОВАНИЕ СВАРНЫХ КОНСТРУКЦИЙ

Методические рекомендации к практическим занятиям для студентов специальности 6-05-0714-03 «Инженерно-техническое проектирование и производство материалов и изделий из них» очной и заочной форм обучения

Часть 1

Могилев 2025

УДК 621.791 ББК 30.4 П79

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Оборудование и технология сварочного производства» «21» апреля 2025 г., протокол № 10

Составитель канд. техн. наук, доц. Д. Н. Юманов

Рецензент канд. техн. наук, доц. М. Н. Миронова

Методические рекомендации к практическим занятиям по дисциплине «Проектирование сварных конструкций» предназначены для студентов специальности 6-05-0714-03 «Инженерно-техническое проектирование и производство материалов и изделий из них» очной и заочной форм обучения.

Учебное издание

ПРОЕКТИРОВАНИЕ СВАРНЫХ КОНСТРУКЦИЙ

Часть 1

Ответственный за выпуск А. О. Коротеев

Корректор А. А. Подошевко

Компьютерная верстка Е. В. Ковалевская

Подписано в печать . Формат 60×84/16. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 26 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 07.03.2019. Пр-т Мира, 43, 212022, г. Могилев.

© Белорусско-Российский университет, 2025

Содержание

1 Практическое занятие № 1. Изучение основных ТНПА и их	
применение в сварочном производстве	4
2 Практическое занятие № 2. Расчет элементов сварных соединений,	
выполненных встык по предельному состоянию и допускаемым	
напряжениям	11
3 Практическое занятие № 3. Расчет элементов сварных соединений,	
выполненных внахлестку по предельному состоянию и допускаемым	
напряжениям	15
4 Практическое занятие № 4. Расчет сварных соединений,	
выполненных контактной точечной сваркой	20
5 Практическое занятие № 5. Расчет сварных соединений на	
усталость	24
Список литературы	

1 Практическое занятие № 1. Изучение основных ТНПА и их применение в сварочном производстве

1.1 Общие теоретические сведения

Условные обозначения швов сварных соединений установлены государственными стандартами.

Сварные соединения должны обозначаться по ГОСТ 2.312—72 Единая система конструкторской документации. Условные изображения и обозначения швов сварных соединений и СТБ ИСО 2553—2004 Соединения сварные и паяные. Условные изображения и обозначения на чертежах.

Шов сварного соединения изображают на чертеже: видимый — сплошной основной линией, невидимый — штриховой линией. От изображения шва проводят линию-выноску с односторонней стрелкой, указывающей место расположения шва.

На чертежах поперечных сечений границы шва изображают сплошными основными линиями, а конструктивные элементы кромок в границах шва — сплошными тонкими линиями.

Обозначения сварных швов наносят над полкой линии-выноски в случае лицевой стороны шва и под полкой для обратной стороны шва. Эти обозначения имеют следующие элементы.

1 Обозначение стандарта на типы и конструктивные элементы швов сварных соединений. В сварочном производстве наиболее распространенными являются следующие стандарты:

ГОСТ 5264–80 Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры;

ГОСТ 8713–79 Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры;

ГОСТ 14771–76 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры;

ГОСТ 11534–75 Ручная дуговая сварка. Соединения сварные под острым и тупым углом;

ГОСТ 11533–75 Сварка под флюсом. Соединения сварные под острым и тупым углом;

ГОСТ 23518–79 Дуговая сварка в защитных газах. Соединения сварные под острым и тупым углом;

ГОСТ 14806-80 Дуговая сварка алюминия в инертных газах;

ГОСТ 15164–78 Электрошлаковая сварка. Соединения сварные;

ГОСТ 16037-80 Соединения сварные стальных трубопроводов;

ГОСТ 16098–80 Соединения сварные из двухслойных коррозионностойких сталей;

ГОСТ 14098–91 Сварка арматуры и закладных деталей.

- 2 Буквенно-цифровое обозначение шва по стандарту (таблица 1.1).
- 3 Условное обозначение способа сварки.

4 Знаки профиля шва и его катета для швов угловых, тавровых и нахлесточных соединений.

Таблица 1.1 —	ипы швов сварных соединений и их условные обозначе	кин

ГОСТ	Вид сварки	Вид соединения	Предел толщины свариваемых деталей, мм	Условное обозначение сварных швов
		Стыковое	1175	C1-C40
5264-80	Рунцая нукороя	Угловое	1100	<i>Y</i> 1– <i>Y</i> 10
3204-80	Ручная дуговая	Тавровое	2120	<i>T</i> 1– <i>T</i> 9
		Нахлесточное	260	H1–H2
	Артомотумоскоя	Угловое	1,540	<i>Y</i> 1– <i>Y</i> 7
8713–80	Автоматическая и полуавтомати-ческая под флюсом	Стыковое	1,5160	C1–C41
0/13-00		Тавровое	360	T1-T13
		Нахлесточное	120	H1–H2
		Угловое	1,5100	<i>Y</i> 1– <i>Y</i> 10
14771–76	В защитных газах	Стыковое	0,5120	C1–C28
14//1-/0		Тавровое	0,8100	<i>T</i> 1– <i>T</i> 9
		Нахлесточное	0,860	H1- H2
		Угловое	0,5100	<i>Y</i> 1– <i>Y</i> 10
15164–69	Электрошлаковая	Стыковое	16800	C1–C3
		Тавровое	16500	T1-T3

следующие Для автоматической сварки обозначения: приняты автоматическая сварка под флюсом без применения подкладок и подварочного шва — A, автоматическая сварка под флюсом на флюсовой подушке — A_{ϕ} , автоматическая сварка под флюсом на стальной подкладке – A_c , автоматическая сварка под флюсом на флюсомедной подкладке $-A_{M}$, автоматическая сварка под флюсом с предварительным наложением подварочного шва $-A_{nu}$, автоматическая сварка под флюсом с предварительной подваркой корня шва $-A_{n\kappa}$, автоматическая сварка под флюсом на остающейся подкладке A_{do} . Те же индексы используются при указании технологических особенностей механизированной сварки (Π , Π_{ϕ} , Π_{c} и т. д.)

Буквенные обозначения дуговой сварки и ручной дуговой сварки на чертежах не проставляют. Буквенные обозначения других способов сварки проставляют на чертежах только в случае применения нескольких способов. При использовании одного способа сварки его указывают в технических требованиях на чертеже.

Стыковое соединение обозначается C, угловое — V, тавровое — T, нахлесточное — H, если форма шва не предусмотрена ГОСТом — O (особый). Цифры возле букв, например C25, T4, указывают порядковый номер данного шва в ГОСТе (вид соединения и шва, а также форму разделки кромок и размеры соединения в сборе).

Способы сварки имеют следующие обозначения: дуговая — \mathcal{F} , газовая — \mathcal{F} , электрошлаковая — \mathcal{F} , в инертных газах — \mathcal{F} , ультразвуковая — \mathcal{F} , трением — \mathcal{F}

холодная — X, диффузионная — \mathcal{A}_{ϕ} , контактная — K, электронно-лучевая — \mathcal{A}_{π} , лазерная — \mathcal{A}_{π} , взрывом — \mathcal{B}_{π} , плазменная — \mathcal{A}_{π} , в углекислом газе — \mathcal{Y} .

Структура обозначения сварного шва показана на рисунке 1.1.

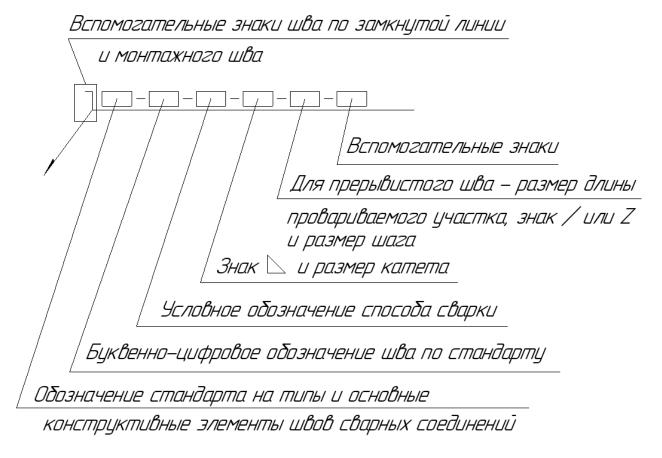


Рисунок 1.1 – Структура обозначения сварного шва

Вспомогательные знаки для обозначения сварных швов показаны в таблице 1.2.

Таблица 1.2 – Обозначения вспомогательных знаков сварных швов

Вспомога-	Значение вспомогательного		относительно полки выноски
знак	знака	с лицевой стороны	с оборотной стороны
	Выпуклость шва снять	0	
<u></u>	Наплывы и неровности обработать с плавным переходом к основному металлу		

Окончание таблицы 1.2

Вспомога-	Значение вспомогательного		а относительно полки выноски
знак	знака	с лицевой стороны	с оборотной стороны
7	Шов выполнить при монтаже изделия, т. е. при установке его на месте эксплуатации		
/	Шов прерывистый или точечный с цепным расположением		
Z	Шов прерывистый или точечный с шахматным расположением	Z	Z
	Шов по замкнутой линии		
	Шов по незамкнутой линии		

Примечание — За лицевую сторону одностороннего шва сварного соединения принимают стороную, с которой произоводят сварку. За лицевую сторону двустороннего шва сварного соединения с несимметрично подготовленными кромками принимают сторону, с которой производят сварку основного шва. За лицевую сторону двустороннего шва сварного соединения с симметрично подготовленными кромками может быть принята любая сторона.

Для контактной сварке применяют следующие обозначения с индексами, отмечающими ее отдельные разновидности: K_p — шовная, K_c — стыковая, K_{cc} — стыковая сопротивлением, K_{co} — оплавлением, K_m — точечная.

Буква перед обозначением вида сварки обозначает: P — ручная, A — автоматическая, Π — механизированная.

В условных обозначениях швов допускаются следующие упрощения:

 при наличии на чертеже швов, выполняемых по одному и тому же стандарту, обозначение стандарта указывают только в технических требованиях чертежа;

- при наличии на чертеже одинаковых швов обозначение на линиивыноске наносят у одного из них, а для остальных швов, имеющих одинаковый номер, на пачке линии-выноски указывают только номер шва. Если же на чертеже все швы одинаковы, то допускается их изображать линиямивыносками без полок;
- допускается не отмечать на чертеже швы линиями-выносками, а приводить указания по сварке записью в технических требованиях чертежа, если эта запись однозначно определяет места сварки, способы сварки, типы швов и размеры их конструктивных элементов.

Для ГОСТ 14771—76 и ГОСТ 23518—79 необходимы пояснения, касающиеся рода защитного газа, вида электрода, а также степени механизации процесса (A — автоматическая сварка, Π — механизированная сварка):

- $V\!\Pi$ сварка в углекислом газе и его смеси с кислородом плавящимся электродом;
 - $U\Pi$ сварка в инертных газах и их смесях с CO_2 плавящимся электродом;
- UH сварка в инертных газах неплавящимся электродом без присадочного металла;

 UH_{Π} — сварка в инертных газах неплавящимся электродом с присадочным металлом.

Примеры условных обозначений сварных швов на чертежах показаны в таблице 1.3.

Таблица 1.3 – Примеры условных обозначений сварных швов на чертежах

Характеристика Эскиз		Условное обозначение шва		
шва	шва	с лицевой стороны	с оборотной стороны	
Шов стыкового соединения с криволинейным скосом одной кромки, двусторонний. Выполняется ручной дуговой сваркой при монтаже изделия. Усиление снято с обеих сторон. Параметр шероховатости шва: с лицевой стороны Rz = 20 мкм; с оборотной Rz = 60 мкм		Rz20	Rz20 ○	

Окончание таблицы 1.3

Характеристика	Эскиз	Условное обо	значение шва
Шва	шва	с лицевой стороны	с оборотной стороны
Шов углового соединения без скоса кромок, двусторонний, выполяемый механизированной сваркой под флюсом		ΓΟCT 11533-42-ΜΦ	ΓΟCT 11533-42-ΜΦ
Тавровое соединение, сваренное на монтаже одностронним перерывистым швом с катетом 5 мм, длина провариваемого участка шва 100 мм, шаг 200 мм механизированной сваркой в CO ₂		FOCT 14.77	1-76-T1-YN-N-\\ 5-100 \/ 200

Для сварки под флюсом (ГОСТ 8713–79) даются пояснения, каким способом обеспечивается удержание сварочной ванны:

 $A\Phi$ – автоматическая на весу;

 $A\Phi\phi$ – автоматическая на флюсовой подушке;

 $A\Phi o$ – автоматическая на остающейся подкладке;

 $M\Phi$ – механизированная на весу;

 $M\Phi o$ – механизированная на остающейся подкладке и т. д.

Для ГОСТ 16037-80 приняты следующие обозначения способа сварки:

 3Π – дуговая сварка в защитном газе плавящимся электродом;

3H – дуговая сварка в защитном газе неплавящимся электродом;

P – ручная дуговая сварка;

 Φ – дуговая сварка под флюсом;

 Γ – газовая сварка.

Задание

1 Приведите расшифровку обозначения сварного шва (таблица 1.4). Изобразите эскиз сваного соединения с обозначением всех конструктивных элементов шва.

2 Найдите ошибки в обозначении сварных швов (таблица 1.5).

Таблица 1.4 – Обозначения сварных швов к заданию 1

Номер варианта	Обозначение шва
1	ΓΟCT 5264-80-T1-_5_
2	ΓΟCT 5264-80-C17
3	<i>FOCT 14771–76–T3–YI7–I7–</i> ≥ <i>3–50</i> ≥ <i>100</i>
4	ГОСТ 14771-76-H1-ИН-П-\\ 3
5	ΓΟCT 14771-76-C7-УП-П
6	- ΓΟCT 8713-79-C25-AΦ
7	<i>FOCT 14771–76–T3–YI7–A–</i> \(\sum 3–100\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8	

Таблица 1.5 – Исходные данные к заданию 2

Номер варианта	Обозначение шва
1	ΓΟCT 5264-80-C6-\\\ 5
2	ΓΟCT 14771-76-T1-YΠ-Π-\\\ 5-50\(\text{Z}\) 100

Окончание таблицы 1.5

Номер варианта	Обозначение шва
3	ΓΟCΤ 8713-79-C4-ΠΦΦ
4	ΓΟCT 11534−75−T1−\\\ 8
5	ГОСТ 14771-76-H1-УН-П-\\ 5
6	ΓΟCT 23518-79-T1-ИΠ-Π-50 Z 100
7	ΓΟCT 16037-80-C17-≥3
8	ΓΟCT 14771-76-H2-YH-A-\\ 5

Контрольные вопросы

- 1 Каким стандартом на чертеже обозначается сварной шов, выполненный ручной дуговой сваркой?
- 2 Каким вспомогательным знаком на чертеже обозначить прерывистый сварной шов?
 - 3 Как обозначить на чертеже нестандартный сварной шов?

2 Практическое занятие № 2. Расчет элементов сварных соединений, выполненных встык по предельному состоянию и допускаемым напряжениям

В современной практике проектирования можно выделить два основных метода расчета сварных конструкций на прочность:

- 1) метод допускаемых напряжений (применяется в машиностроении);
- 2) метод предельных состояний (применяется в строительной отрасли).

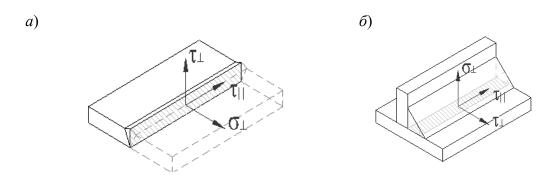
Сущность метода допускаемых напряжений состоит в следующем: размеры элементов конструкции назначаются из условия, чтобы действующие в них напряжения от действия нормативных нагрузок (в нормальном режиме эксплуатации) не превышали допускаемых напряжений $[\sigma]$ и $[\tau]$. В методе отношение предела прочности материала к допускаемым напряжениям было названо коэффициентом запаса прочности n.

Допускаемые напряжения при растяжении $[\sigma]_p$ называют основными. Допускаемые напряжения при других видах внешних нагрузок определяются как производные от основных $[\sigma]_p$.

Для конструкционных сталей допускаемые напряжения в сварных швах устанавливаются в зависимости от допускаемых напряжений основного металла и зависят от следующих факторов: механических свойств (предел текучести, предел прочности), рода нагрузок (растяжение, сжатие, изгиб, кручение и срез), характера нагрузок (переменные или статические), расчетной температуры, технологии выполнения швов. Например, при сварке

низкоуглеродистой стали марки Ст3, для которой допускаемое напряжение на растяжение $[\sigma]_p = 160$ МПа, допускаемые напряжения в швах, выполненных автоматической сваркой и сварочными электродами 342A, будут следующие: $[\sigma']_p = 160$ МПа; $[\sigma']_{cж} = 160$ МПа; $[\tau'] = 100$ МПа. При сварке электродами 342: $[\sigma]_p = 144$ МПа; $[\sigma']_{cж} = 160$ МПа; $[\tau'] = 96$ МПа, где $[\tau']$ — допускаемое напряжение в шве при срезе [1, c. 21].

Для сварных швов, нагруженных комбинированной нагрузкой, результирующие эквивалентные напряжения в шве определяются следующим соотношением:


$$S_W = \sqrt{\sigma_{\perp}^2 + 3 \cdot (\tau_{\perp}^2 + \tau_{//}^2)},$$
 (2.1)

где σ_{\perp} – нормальное напряжение, перпендикулярное сечению шва, МПа;

 $\tau_{_{\perp}}$ – касательное напряжение, перпендикулярное оси шва, МПа;

 $au_{_{/\!/}}$ — касательное напряжение вдоль оси шва, МПа (рисунок 2.1).

Формулы для определения отдельных компонент напряжений представлены в таблице 2.1.

a – стыковой шов; δ – угловой шов

Рисунок 2.1 – Компоненты напряжений при комбинированной внешней нагрузке

Таблица 2.1 – Расчет компонент напряжений в стыковых швах

Схема	а нагрузки шва	*
Вид нагрузки	Эскиз	Формула для компоненты напряжений
Растяжение/сжатие	N N	$\sigma_{\perp} = \frac{N}{A_{_{\scriptscriptstyle W}}} = \frac{N}{L_{_{\scriptscriptstyle W}} \cdot a_{_{\scriptscriptstyle W}}}$
Сдвиг (срез)	N N N	$\tau_{_{/\!/}} = \frac{N}{A_{_{\scriptscriptstyle w}}} = \frac{N}{L_{_{\scriptscriptstyle w}} \cdot a_{_{\scriptscriptstyle w}}}$
Изгиб	MM	$\sigma_{\perp} = \frac{M}{W_{_{\scriptscriptstyle W}}} = \frac{6 \cdot M}{L_{_{\scriptscriptstyle W}}^{^{2}} \cdot a_{_{\scriptscriptstyle W}}}$

Окончание таблицы 2.1

Схема	а нагрузки шва	
Вид нагрузки	Эскиз	Формула для компоненты напряжений
Изгиб	M M	$\sigma_{\perp} = \frac{M}{W_{w}} = \frac{6 \cdot M}{L_{w} \cdot a_{w}^{2}}$
Кручение	TT	$ \tau_{\perp} = \frac{T}{Z_{w}} = \frac{T}{\delta \cdot L_{w} \cdot a_{w}^{2}}; \ \delta = \frac{L_{w}}{3L_{w} + 1.8a_{w}} $
Растяжение косого шва	N N	$\sigma_{\perp} = \frac{N \cdot \cos \alpha}{A_{w}} = \frac{N \cdot \cos^{2} \alpha}{L_{w} \cdot a_{w}};$ $\tau_{//} = \frac{N \cdot \sin \alpha}{A_{w}} = \frac{N \cdot \sin 2\alpha}{2 \cdot L_{w} \cdot a_{w}}$
Растяжение/сжатие кольцевого шва	NN	$\sigma_{\perp} = \frac{N}{A_{w}} = \frac{4 \cdot N}{\pi (D^{2} - d^{2})} ;$ $d = D - 2 \cdot a_{w}$

Примечание – A_w – площадь сечения шва в расчетах на прочность, мм²; a_w – толщина шва в расчетах на прочность, мм; L_w – эффективная длина сварного шва, мм; W_w – момент сопротивления сечения шва при изгибе, мм³; Z_w – момент сопротивления сечения шва при кручении, мм³

Задание 1

Определите на эскизе толщину шва $a_{\rm w}$, которая применяется в прочностных расчетах. Для каждого случая укажите тип соединения (стыковое, угловое и т. д.), охарактеризуйте проплавление (полное, неполное, частичное) и подготовку деталей под сварку. Результаты оформите по примеру в таблице 2.2. Эскизы сварных соединений по вариантам задания приведены в таблице 2.3.

Таблица 2.2 – Пример выполнения задания 1

Эскиз	Тип	Характеристика	Подготовка деталей
ЭСКИЗ	соединения	проплавления*	под сварку
01 a	Стыковое (BW)	Полное проплавление	Без скоса кромок и зазора
02 135° ≤ α ≤ 180°	Стыковое (BW)	Полное проплавление	Без скоса кромок

Таблица 2.3 – Эскизы сварных соединений

Номер варианта		Эскиз сварных соединений						
1								
2								
3								
4								
5				45° ≤ α ≤ 90°				
6	5° ≤ α ≤ 45°			0° ≤ α ≤ 5°				
7								
8	30° ≤ α ≤ 135°			<u>α</u> 0° ≤ α ≤ 30°				

Задание 2

Определите длину стыкового сварного шва типа C7 (двухсторонний без разделки кромок), который сможет воспринимать заданную растягивающую силу N (таблица 2.4). Сила приложена по линии центра тяжести сварного соединения. Расчет выполнить по допускаемым напряжениям $[\sigma]_p$. Шов выполняется на выводных планках.

Номер варианта	Способ сварки, материал	Сварочный материал	Толщина деталей <i>S</i> , мм	Сила <i>N</i> , кН	Допускаемое напряжение на растяжение $[\sigma]_p$, МПа
0	Под флюсом	Св-08А Ø1,6	6	57	160
1	РДС, Ст3	Э42A Ø3	3	14	160
2	РДС, Ст3	Э42 Ø4	4	23	144
3	Под флюсом, Ст3	Св-08А Ø1,6	7	78	160
4	Механизированная в CO ₂ , Cт3	Св-08Г2С Ø1,2	5	40	160

Таблица 2.4 – Исходные данные к заданию 2

На стыковой шов действует нагрузка на растяжение, а значит, в его сечении возникает только компонента нормальных напряжений $\sigma_{\perp} = \frac{N}{A_{\scriptscriptstyle W}} = \frac{N}{L_{\scriptscriptstyle W} \cdot a_{\scriptscriptstyle W}}$.

Толщина шва будет равна толщине свариваемых деталей: $a_w = S = 6$ мм.

Условие прочности будет выглядеть следующим образом: $\sigma_{\perp} = \frac{N}{L_{_{\text{NV}}} \cdot a_{_{\text{NV}}}} \leq [\sigma]_{_{p}} \text{, откуда эффективная длина шва}$

$$L_{w} = \frac{N}{[\sigma]_{p} \cdot a_{w}} = \frac{57 \cdot 10^{3}}{160 \cdot 10^{6} \cdot 6 \cdot 10^{-3}} = 0,059 \text{ m}.$$

Так как по условию задачи шов выполнен на выводных планках, то с учетом округления принимаем длину, равную 60 мм.

Контрольные вопросы

- 1 Как определяется коэффициент запаса прочности сварного соединения?
- 2 От каких факторов зависят и устанавливаются допускаемые напряжения в сварных швах?
- 3 Какие геометрические размеры можно определить расчетным путем для стыковых сварных швов?

3 Практическое занятие № 3. Расчет элементов сварных соединений, выполненных внахлестку по предельному состоянию и допускаемым напряжениям

Особенность методики расчета по предельным состояниям состоит в том, что рассматривается некоторое расчетное предельное состояние, а один коэффициент запаса n заменяется системой расчетных коэффициентов: по напряжениям, по нагрузкам, по условиям возведения и эксплуатации конструкции.

Существует несколько предельных состояний, ограничивающих возможность нормальной эксплуатации конструкций. Первое расчетное предельное состояние определяется несущей способностью конструкции: ее прочностью, устойчивостью, выносливостью при динамических и переменных нагрузках. Второе расчетное предельное состояние обусловлено наибольшей деформацией конструкции: прогибами при статических нагрузках, колебаниями при динамических. Третье расчетное предельное состояние характеризуется максимально допустимыми местными повреждениями, например, величиной раскрытия трещин, коррозией и т. п.

В основу расчета по первому предельному состоянию положены так называемые нормативные сопротивления $R_{\scriptscriptstyle H}$. Значения $R_{\scriptscriptstyle H}$ устанавливаются нормами на проектирование с учетом условий контроля и статистической изменчивости механических свойств материала. В качестве нормативного сопротивления принимают минимальный предел текучести стали $\sigma_{\scriptscriptstyle M}$ или предел прочности $\sigma_{\scriptscriptstyle 6}$.

С учетом неоднородности свойств материала нормативные сопротивления заменяются расчетными сопротивлениями R. Расчетное сопротивление устанавливают, как частное от деления $R_{\rm H}$ на коэффициент надежности по материалу. В металлических конструкциях различают два вида расчетного сопротивления R: $R_{\rm y}$ — расчетное сопротивление, установленное по пределу текучести и используемое в расчетах, предполагающих упругую работу материала; $R_{\rm u}$ — расчетное сопротивление, установленное по пределу прочности и используемое в расчетах конструкций, где допустимы значительные пластические деформации.

Нормативная нагрузка — это нагрузка, соответствующая нормальным условиям эксплуатации сооружения, ее значение устанавливается нормами на проектирование (ТКП, СТБ и пр.). Нагрузки, получаемые путем умножения их нормативных значений на коэффициент надежности по нагрузке, называются расчетными. Расчетные нагрузки являются наибольшими нагрузками, которые могут возникнуть за время эксплуатации сооружений.

Применяемые сварочные материалы и технология сварки должны обеспечивать значение временного сопротивления металла шва не ниже нормативного значения временного сопротивления R_u основного металла, а также значения твердости, ударной вязкости и относительного удлинения металла сварных соединений, установленные соответствующими нормативными документами.

Согласно [2, п. 4.5.3] расчетное сопротивление сварного соединения должно удовлетворять двум условиям:

$$\sqrt{\sigma_{\perp}^2 + 3 \cdot (\tau_{\perp}^2 + \tau_{//}^2)} \le \frac{\sigma_e}{\gamma_2};$$

$$\sigma_{\perp} \le 0.9 \frac{\sigma_e}{\gamma_2},$$
(3.1)

где σ_{θ} — номинальный предел прочности менее прочной детали соединения, МПа;

 γ_2 – частный коэффициент безопасности.

Компоненты напряжений рассчитываются по формулам из таблицы 3.1.

Таблица 3.1 – Расчет компонент напряжений в угловых швах

	Схема нагрузки шва	Формула для компоненты	
Вид нагрузки	Эскиз	напряжений	
Отрыв	Ay Fy Aw	$\sigma_{\perp} = \frac{F_z}{A_w} = \frac{F_z}{L_w \cdot a_w}$	
Срез	yznotoù wot	$\tau_{\perp} = \tau_{x} = \frac{F_{x}}{A_{w}}; \tau_{\parallel} = \tau_{y} = \frac{F_{y}}{A_{w}}$	
Изгибающий момент	Fz Fx T	$\sigma_{\perp} = \frac{M \cdot r_{y}}{I_{wx}}$	
Крутящий момент	z	$\tau_{\perp} = \tau_{x} = \frac{T \cdot r_{y}}{J_{w}}; \tau_{\parallel} = \tau_{y} = \frac{T \cdot r_{x}}{J_{w}}$	

 Π римечание — r_x , r_y — радиусы инерции сечения шва относительно осей, мм; I_{wx} , I_{wy} — моменты инерции сечения шва относительно осей, мм 4 ; J_w — полярный момент инерции сечения шва, мм 4

В [2] рекомендуемое значение γ_2 =1,25. По установленным в [3] параметрам $\gamma_2 = \gamma_u = 1,3$, где γ_u — коэффициент надежности для элементов, рассчитываемых на прочность с использованием расчетных сопротивлений по временному сопротивлению стали, т. е. с использованием расчетных сопротивлений R_u .

В угловых сварных швах при одном и том же катете K толщина шва a_w может существенно отличаться. Поэтому для ее задания в расчет вводят поправочный коэффициент для угловых сварных шов $\beta = 0,7...1,1$, который характеризует механические свойства свариваемых материалов и технологию сварки: $a_w = \beta \cdot K$.

Для проведения прочностных расчетов сварных соединений необходимо в первую очередь хорошо ориентироваться в основных типах соединений и их геометрических характеристиках. Это позволит правильно выбрать расчетные формулы и размеры сварных швов.

Задание

Рассчитайте соединение фасонки из стали С245 с внецентренным нагружением (рисунок 3.1) по первому предельному состоянию. Раскос растянут силой F_{Ed} , эксцентриситет приложения силы на сварное соединение e. Фасонка приварена к колонне двумя угловыми швами катетом K (таблица 3.2).

Находим расчетные геометрические параметры сварного соединения. Эффективная толщина углового шва [2, п. 4.5.2]

$$a_W = K \cos \gamma = \frac{5\sqrt{2}}{2} = 3.5 \text{ mm}.$$
 (3.2)

Эффективная длина одностороннего шва

$$L_{\rm w} = L - 2a_{\rm w} = 34 - 0.7 = 33.3$$
 cm.

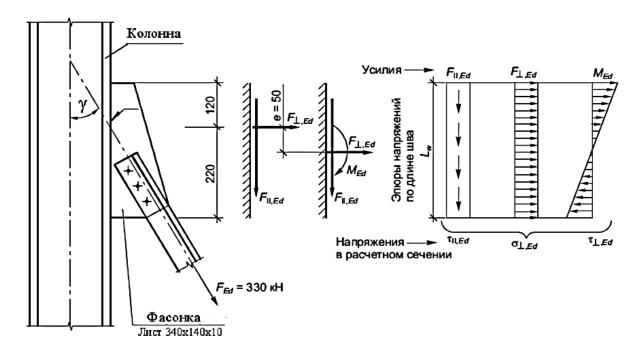


Рисунок 3.1 – Сварное соединение узловой фасонки при внецентренном нагружении

Таблица 3.2 – Исходные данные к заданию

Номер варианта	Сила F_{Ed} , кН	Эксцентриситет <i>е</i> , мм	Катет шва <i>К</i> , мм	Угол ү, град	Предел прочности σ_u , МПа
0	330	50	5	30	
1	350	60	7	45	
2	250	70	6	60	360
3	180	40	4	45	
4	200	80	5	60	

Определяем усилия в плоскости сварного соединения:

$$F_{\text{H,Ed}} = F_{\text{Ed}} \cdot \cos \gamma = 286$$
 κH;

$$F_{\perp,Ed} = F_{Ed} \cdot \sin \gamma = 165 \text{ kH};$$

$$M_{\rm Ed} = F_{\rm l,Ed} \cdot e = 165 \cdot 5 = 825$$
 кН $^{\circ}$ см.

Выполняем расчет несущей способности сварных угловых шов по направленному методу [2, п. 4.5.3.2]. Компоненты напряжений в плоскости сварного шва показаны на рисунке 3.2.

Определяем напряжения в крайних точках швов:

$$\tau_{\text{H/Ed}} = \frac{F_{\text{H/Ed}}}{2 \cdot a_{\text{w}} \cdot L_{\text{W}}} = \frac{286}{2 \cdot 0.35 \cdot 33.3} = 12.27 \text{ kH/cm}^2;$$
(3.3)

$$\tau_{\perp,Ed} = \sigma_{\perp,Ed} = \left(\frac{F_{\perp,Ed}}{2 \cdot a_w \cdot L_W} + \frac{M_{Ed}}{W_W}\right) \cos \frac{\alpha}{2} = \left(\frac{F_{\perp,Ed}}{2 \cdot a_w \cdot L_W} + \frac{6M_{Ed}}{2 \cdot a_w \cdot L_W^2}\right) \cos \frac{\alpha}{2} = \left(\frac{165}{2 \cdot 0,35 \cdot 33,3} + \frac{6 \cdot 825}{2 \cdot 0,35 \cdot 33,3^2}\right) \cos \frac{\alpha}{2} = 9,55 \text{ kH/cm}^2.$$
(3.4)

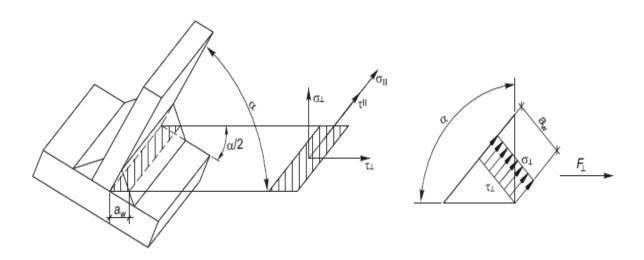


Рисунок 3.2 – Распределение напряжений в угловом сварном шве от поперечной силы

Проверяем по формулам (3.1) прочность швов:

$$\sqrt{9,55^2 + 3 \cdot (9,55^2 + 12,27^2)} = 28,57 \text{ kH/cm}^2 < \frac{36}{1,25} = 28,8 \text{ kH/cm}^2;$$

$$9,55 \,\mathrm{kH/cm^2} < 0.9 \frac{36}{1.25} = 25,92 \,\mathrm{kH/cm^2}.$$

Несущая способность сварных швов, вычисленная по направленному методу, обеспечена.

Выполним расчет соединения по упрощенной методике [2, п. 4.5.3.3]. Для этого находим нагрузки на единицу длины шва (поперечную силу V_{Ed} и осевую силу N_{Ed}) в верхней крайней точке:

$$V_{\text{H,Ed}} = \frac{F_{\text{H,Ed}}}{L_w} = \frac{286}{33.3} = 8.58 \text{ kH/cm}^2;$$
 (3.5)

$$N_{\perp,Ed} = \frac{F_{\perp,Ed}}{L_{w}} + \frac{6M_{Ed}}{L_{w}^{2}} = \frac{165}{33,3} + \frac{6 \cdot 825}{33,3^{2}} = 9,42 \text{ kH/cm}.$$
 (3.6)

Расчетное значение внешних усилий, действующих на единицу длины сварного шва:

$$F_{w,Ed} = \sqrt{V_{//,Ed}^2 + N_{\perp,Ed}^2} = \sqrt{8.58^2 + 9.42^2} = 12.74 \text{ kH/cm}.$$
 (3.7)

Независимо от ориентации плоскости сечения сварного шва относительно направления приложения силы, расчетную несущую способность сварного соединения $F_{w,Rd}$ определяем по формуле

$$F_{w,Rd} = \frac{\sigma_u}{\sqrt{3} \cdot \beta_w \cdot \gamma_2} \cdot 2 \cdot a_w = \frac{36}{\sqrt{3} \cdot 0.8 \cdot 1.25} \cdot 2 \cdot 0.35 = 14.55 \text{ kH/cm}, \quad (3.8)$$

где β_w — поправочный коэффициент для угловых сварных швов, для стали С245 β_w = 0,8 [2, таблица 4.1].

Проверка прочности двухстороннего шва выполнена:

$$F_{w.Ed} = 12,74 \text{ kH/cm} < F_{w.Rd} = 14,55 \text{ kH/cm}.$$

Контрольные вопросы

- 1 Как определяется расчетное сопротивление сварного соединения?
- 2 Как определяются расчетные нагрузки, действующие на сварную конструкцию?
- 3 Какие геометрические размеры можно определить расчетным путем для стыковых сварных швов?

4 Практическое занятие № 4. Расчет сварных соединений, выполненных контактной точечной сваркой

Прочность сварных соединений при контактной точечной сварке (КТС) зависит от диаметра ядра точки d, который устанавливается ГОСТ 15878–79 [4] для требуемой толщины свариваемых деталей S. Минимальный диаметр ядра d, мм, можно вычислить по следующей зависимости:

$$d = 2 \cdot S + 3. \tag{4.1}$$

Сварные соединения при точечной сварке могут работать как на отрыв (рисунок 4.1, a), так и на срез (рисунок 4.1, δ). При проектировании точки в сварном соединении следует располагать таким образом, чтобы они

воспринимали преимущественно усилия среза, а не отрыва.

При расчете на срез сварных соединений, выполняемых КТС, как правило, требуется определить требуемое количество точек n_m исходя из следующей зависимости:

$$\tau = \frac{N}{A_W} = \frac{N}{\frac{\pi d^2}{4} \cdot n_m} \le [\tau'], \tag{4.2}$$

где N – нагрузка на срез, H;

[т'] – допускаемое напряжение в точке при срезе, МПа;

d – диаметр точки, мм;

 n_{m} — количество точек.

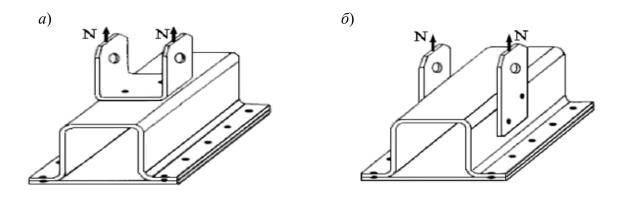


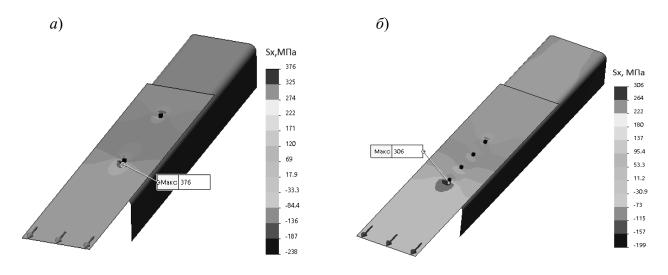
Рисунок 4.1 – Детали, сваренные контактной точечной сваркой

При назначении диаметра сварной точки согласно [4] расчет прочности сварной точки можно производить только на срез.

При работе сварной точки на отрыв расчетное напряжение

$$\sigma = \frac{N}{A_{w}} = \frac{N}{\pi d^{2}} \leq [\sigma'], \tag{4.3}$$

где $[\sigma']$ – допускаемое напряжение в точке при отрыве, $[\sigma'] < [\tau']$.


Допускаемые напряжения для соединений, выполняемых контактной точечной сваркой, целесообразно назначать по результатам экспериментальных испытаний образцов-свидетелей. Условно, при КТС допускаемые напряжения могут быть приняты: на срез $[\tau'] = (0,4...0,5)[\sigma]_p$; на отрыв $[\sigma'] = (0,25...0,3)[\sigma]_p$.

Расстояние между центрами точек в соединении называется шагом t, который назначается из технологических и конструктивных соображений. Для предотвращения шунтирования сварочного тока через соседние точки шаг должен быть равен:

$$t \ge (3...5)d. \tag{4.4}$$

При проведении расчетов по формулам (4.2) и (4.3) предполагается следующее допущение: нагрузка распределяется равномерно по всем сваренным точкам. Однако при приложении внешней нагрузки вдоль линии расположения точек наблюдается неравномерность распределения напряжений в сварной конструкции. Это можно проследить по результатам расчета конечно-элементной модели сварного соединения (рисунок 4.2).

В сварном соединении с двумя точками (см. рисунок 4.2, *а*) в детали на удалении от точек нормальные напряжения составляют около 170...180 МПа. В зоне первой точки, расположенной ближе к линии действия нагрузки, наблюдаем растягивающие напряжения величиной 376 МПа, за второй точкой – сжимающие нормальные напряжения величиной 238 МПа (см. рисунок 4.2, *а*). При приложении внешней нагрузки на растяжение 10 кН к листовой детали толщиной 1 мм нормальные напряжения в зоне крайних сварных точек практически равны пределу прочности материала. Очевидно, что необходимо увеличить количество сварных точек для обеспечения несущей способности сварного соединения.

a – две сварные точки; δ – четыре сварные точки

Рисунок 4.2 – Распределение нормальных напряжений в сварной конструкции

С увеличением количества сварных точек до четырех (см. рисунок 4.2, δ) в листовой детали на удалении от точек нормальные напряжения составляют около 170 МПа, в зоне первой точки — 306 МПа, за сварными точками наблюдаем сжимающие нормальные напряжения величиной 199 МПа. Увеличение количества сварных точек обеспечивает снижение концентрации напряжений.

Задание

Определите количество сварных точек для конструкции, представленной на рисунке 4.3. Сила N приложена по линии центра тяжести сечения листа. Исходные данные выбираются из таблицы 4.1. Начертите чертеж сварной конструкции с указанием обозначения сварных швов и шага между точками.

Таблица 4.1 – Исходные данные к заданию

Номер варианта	Допускаемое напряжение на срез [τ'], МПа	Толщина S , мм	Сила <i>N</i> , кН	Длина L ,
1		1	10	240
2	70	2	15	260
3	70	3	20	260
4		4	30	280

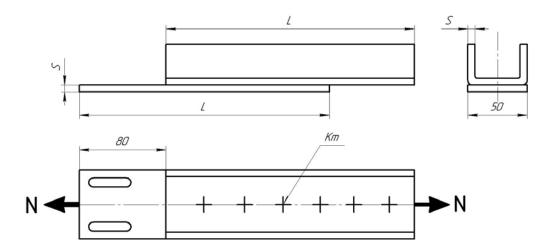


Рисунок 4.3 – Конструкция, выполняемая КТС

Для проведения расчета необходимо вначале определить минимальный диаметр литого ядра по формуле (4.1), далее из формулы (4.2) выразить и рассчитать требуемое количество точек n_m . Расчетное число точек следует округлить до целого значения в сторону увеличения.

Последним этапом расчета является размещение сварных точек на чертеже и проверка габаритов конструкции.

Проверка габаритов осуществляется исходя из следующих условий:

- расстояние от края детали до сварной точки должно быть не менее 15...20 мм;
- для предотвращения шунтирования сварочного тока шаг между точками t должен быть не менее значения, вычисляемого по формуле (4.4). Вначале следует принять максимальный шаг t = 5d. Если габариты конструкции не позволят разместить точки с таким шагом, то уменьшить шаг до 4d;
- диаметр стандартных сварочных электродов составляет не менее 20 мм (в рассматриваемом примере ширина верхней детали должна обеспечивать возможность токоподвода).

Контрольные вопросы

- 1 Как определяется диаметр сварной точки при контактной сварке?
- 2 От чего зависит прочность точечных сварных соединений?
- 3 Как влияет размер шага сварных точек на величину тока шунтирования?

5 Практическое занятие № 5. Расчет сварных соединений на усталость

Современные методы расчета прочности деталей основаны на гипотезах непрерывности, однородности и изотропности материала. В действительности распределение усилий между зернами металла происходит неравномерно. В некоторых зернах могут иметь место значительные пластические деформации, в результате чего образуются микротрещины. При переменных нагрузках они имеют тенденцию развиваться: сначала развитие трещин происходит очень медленно, далее постепенно ускоряется, а на последнем этапе происходит внезапное разрушение. При этом местные напряжения оказываются опасными для прочности не только хрупких, но и пластичных металлов.

Анализ природы усталостного разрушения очень сложен, т. к. требует изучения неоднородной среды (кристаллиты и межкристаллические среды). В сварных соединениях задача анализа значительно осложняется наличием остаточных напряжений и неоднородностью свойств различных зон наплавленного и основного металлов.

Прочность при переменных нагрузках зависит главным образом от числа циклов нагружения, амплитуды изменения напряжения, формы и размеров испытуемых образцов, их материала, состояния поверхности, вида нагружения (изгиб, кручение), свойств среды, в которой производится испытание (воздух, вода и т. п.).

На рисунке 5.1 изображена диаграмма усталостной прочности металла в зависимости от числа циклов нагружения, построенная в полулогарифмических координатах.

Рисунок 5.1 – Диаграмма прочности стали в зависимости от числа нагружений N

Число циклов нагружения в логарифмическом масштабе отложено по оси абсцисс, а значения разрушающих напряжений — по оси ординат. Опытами подтверждено, что зависимость $\sigma = f(N)$ (рисунок 5.1) при построении в этих координатах может быть изображена двумя отрезками прямой: наклонным и горизонтальным. Горизонтальная прямая соответствует пределу выносливости.

Максимальное напряжение, при котором материал не разрушается при достаточно большом числе циклов нагружения, называется *пределом выносливости*. При испытаниях стальных образцов предел выносливости определяют при $N=10^7$.

Если образец испытывают при меньшем числе нагружений, то значение разрушающих напряжений называют *пределом ограниченной выносливости*.

Предел выносливости зависит в значительной степени от *характеристики* цикла. Цикл – совокупность всех значений напряжений за время одного периода нагружения.

Прочность деталей конструкций при переменных нагрузках зависит от концентрации напряжений. Эффективным коэффициентом концентрации напряжений K_9 называется отношение предела выносливости гладкого образца к пределу выносливости образца при наличии концентратора; $K_9 \ge 1$, причем чем ближе K_9 к единице, тем лучше работает изделие.

Расчет прочности сварных конструкций, работающих под переменными нагрузками, производится по марке металла, характеристике цикла r, эффективным коэффициентам концентрации напряжений $K_{\mathfrak{I}}$ и продолжительности эксплуатации, определяемой числом нагружении N.

При расчетах машиностроительных сварных соединений используют расчетную формулу

$$\sigma = \frac{F}{A} \leq [\sigma']_p \cdot \gamma_p,$$

где ү – коэффициент снижения допускаемых напряжений.

Для строительных конструкций расчет прочности сварных соединений производят с учетом расчетных сопротивлений. Значения расчетных сопротивлений при переменных нагрузках умножают на коэффициент у. Если наибольшее напряжение растягивающее, то

$$\gamma = c / (a - br).$$

Или для сжимающих наибольших напряжений

$$\gamma = c / (b - ar),$$

где r – характеристика цикла;

a, b, c – коэффициенты (таблица 5.1).

При расчете по строительным нормам каждый тип соединения причисляется к одной из восьми условных групп (таблица 5.2).

Задание

Определите несущую способность прикрепления стальной полосы шириной l=200 мм и толщиной s=10 мм к стальной косынке лобовым швом длиной $l_1=200$ мм и двумя фланговыми швами длиной $l_2=150$ мм. Характеристика цикла нагружения — несимметричный, r=0,2. Расчетное

сопротивление R для основного металла при растяжении и расчетное сопротивление R_c при срезе для угловых швов указаны в таблице 5.3. Допускаемое напряжение находим при условии, что коэффициент условий работы m=0,9, коэффициент безопасности k=1,1. Проверьте равнопрочность сварных швов основному металлу в зоне сварного соединения. Геометрические размеры сечения сварных швов, способ сварки, марка стали, число циклов нагружения и расчетные сопротивления указаны в таблице 5.3.

Таблица 5.1 – Значения коэффициентов а, b и с

Класс	Группа		1.	c при числе циклов n				
стали	соединений	а	<i>a b</i> 5		10 ⁶	2·10 ⁶	3.106	5.106
C38/23	1	1,20	0,6	1.2				
	2	1,30	0,7	1,2	1 1			0,9
	3	1,55	0,95		1,1		0,95	0,9
	4	1,85	1,25	1,3		1,0		
	5	2,10	1,5					
	6	2,75	2,15					
	7	3,50	2,90	1,4	1,2			0,85
	8	4,80	4,20					
C 44/29	1	1,25	0,65	1,2	1,1			
C 46/33	2	1,45	0,85					0,9
	3	1,80	1,20			1,0	0,95	0,9
	4	2,40	1,80	1,4	1,2		0,73	
	5	2,75	2,15					
	6	3,80	3,20					
	7	4,80	4,20	1,6	1,3			0,85
	8	6,00	5,40					

Таблица 5.2 – Группы элементов и соединений при расчете на усталость

Номер схемы	Схема элемента и расположение расчетного сечения	Характеристика элемента	Группа элемента
1	2	3	4
1	a a	Основной металл с прокатными или обра- ботанными механическим путем кромками То же с кромками, обрезанными машинной газовой резкой	2
2	r Ia	Основной металл с обработанными механическим путем кромками при разной ширине и радиусе перехода r , мм: 200	1 4

Продолжение таблицы 5.2

1	2	3	4
3	a a a a a a a a a a a a a a a a a a a	Основной металл в соединениях на высокопрочных болтах	1
4		Основной металл в болтовом (болты класса точности А) соединении в сечениях по отверстию: при парных накладках при односторонних накладках	4 5
5		Переход и закругление (класс чистоты газовой резки 1 или фрезеровка) при $\alpha \geq 72^\circ, \ r \geq \frac{b}{2}$	2
6		Фасонки прямоугольной формы, приваренные встык или тавр к элементам конструкций без механической обработки перехода от фасонки к элементу	7
7		Фасонки, приваренные встык или в тавр к стенкам и поясам балок, а также к элементам ферм при $\alpha \leq 45^\circ$	4
8		Фасонки прямоугольной или трапециевидной формы, приваренные к поясам балок внахлестку с обваркой по контуру нахлестки без механической обработки швов	7
9		Стыковой необработанный шов; нагрузка перпендикулярна сварному шву; стыкуемые элементы одинаковой ширины и толщины	2
10	a i≤1:5	Стыковой необработанный шов; стыкуемые элементы разной ширины или разной толщины	5

Продолжение таблицы 5.2

1	2	3	4
11		Основной металл в месте перехода к стыковому шву со снятым механическим способом усилением шва:	
		при стыковании элементов одинаковой толщины и ширины	2
	a a	то же разной толщины и ширины	3
12		Стыковой шов, выполненный на подкладном листе; нагрузка перпендикулярна сварному шву	4
13		Стыковой шов труб, выполненный на подкладном кольце	4
14		Соединение встык прокатных профилей	4
15		Сварные сечения двутаврового, таврового и других типов, сварные непрерывными продольными швами при действии усилия вдоль оси шва	2
16	a a	Элемент со вспомогательным элементом, прикрепленным продольными швами, при α : $\leq 45^{\circ}$ 90°	4 7
17		Обрыв поясного листа без механической обработки поперечного (лобового) шва	7
18		Основной металл с поперечным швом; сварной шов двусторонний с плавным переходом к основному металлу	4
19		Основной металл растянутых поясов балок и элементов ферм вблизи диафрагм и ребер, приваренных угловыми швами	5

Окончание таблицы 5.2

1	2	3	4
20	$ \begin{array}{c c} a & \geq 5t \\ \hline a & \\ a \end{array} $	Основной металл в месте перехода к поперечному (лобовому) угловому шву	6
21		Основной металл в соединениях с фланговыми швами (в местах перехода от элемента к концам фланговых швов): а – с двойными фланговыми швами б – с фланговыми и лобовыми швами в – при передаче усилия через основной металл г – щеки анкеров для крепления стальных канатов	8 7 7 8
22	d_m	Основной металл трубы растянутого раскоса при отношении толщины к наружному диаметру трубы пояса: $t_m/d_m \geq 1/14$ $1/20 \leq t_m/d_m < 1/14$	7 8
23	$\alpha = 45^{\circ}60^{\circ}$	Основной металл трубы растянутого раскоса при отношении диаметров раскоса и пояса $d_d/d_m=0,40,7$ и отношении толщины к наружному диаметру трубы пояса: $t_m/d_m \geq 1/14$ $1/20 \leq t_m/d_m < 1/14$ $1/35 < t_m/d_m < 1/20$	6 7 8

Пример выполнения задания

Допускаемые напряжения при статическом нагружении

$$[\sigma']_p = R \cdot m / k = 210 \cdot 0.90 / 1.1 = 172 \text{ M}\Pi a.$$

В угловых швах

$$[\tau'] = R_c \cdot m / k = 150 \cdot 0.90 / 1.1 = 122 \text{ M}\Pi a.$$

Таблица 5.3 – Исходные данные к заданию

Номер	Марка	Способ	Катет	Число циклов	Расчетное	Расчетное
варианта	стали	сварки	сварного	нагружения,	сопротивление при	сопротивление
	G 20/22		шва, мм	n 5.106	растяжении <i>r</i> , МПа	
1	C 38/23	РДС	10	5·10 ⁶	210	150
2	C 38/23	РДС	8	5.10^{6}		
3	C 38/23	РДС	6	$2 \cdot 10^6$		
4	C 44/29	РДС	10	$2 \cdot 10^6$	265	175
5	C 44/29	РДС	8	5·10 ⁵		
6	C 44/29	РДС	6	5·10 ⁵		
7	C 44/29	B CO ₂	10	5·10 ⁶		
8	C 44/29	B CO ₂	9	5·10 ⁶		
9	C 44/29	B CO ₂	8	2·106		
10	C 44/29	B CO ₂	7	2·106		
11	C 44/29	B CO ₂	6	5·10 ⁵		
12	C 46/33	B CO ₂	10	5.10^{6}	275	200
13	C 46/33	B CO ₂	9	5·10 ⁶		
14	C 46/33	РДС	8	2.10^{6}		
15	C 46/33	РДС	7	$2 \cdot 10^6$		
16	C 46/33	РДС	6	5·10 ⁵		
17	C 46/33	B CO ₂	5	5·10 ⁶		
18	C 38/23	B CO ₂	9	5·10 ⁶	210	150
19	C 38/23	B CO ₂	7	2·106		
20	C 38/23	B CO ₂	5	2·106		

Согласно таблице 5.2 сварное соединение относится к группе 8. По таблице 5.1 находим значения коэффициентов $a=4,8,\,b=4,2$ и c=0,85.

$$\gamma = 0.85 / (4.8 - 0.2 \cdot 4.2) = 0.215;$$

$$[\sigma']_p \cdot \gamma = 36.9 \text{ M}\Pi \text{a}.$$

Несущая способность сварного соединения по основному металлу в зоне сварных швов

$$P = l \cdot s [\sigma']_p \cdot \gamma = 0.2 \cdot 0.01 \cdot 36.9 \cdot 10^6 = 73800 \text{ H}.$$

Проверяем равнопрочность сварных швов основному металлу при статическом нагружении.

Для основного металла

$$P_1 = l \cdot s[\sigma']_p = 0.2 \cdot 0.01 \cdot 172 \cdot 10^6 = 344000 \text{ H}.$$

Для угловых швов при $\beta = 0.7$ и катете K = 10 мм

$$P_2 = \beta \cdot K (l_1 + 2l_2) \cdot [\tau'] = 0.7 \cdot 0.01(0.2 + 2 \cdot 0.15) \cdot 122 \cdot 10^6 = 426000 \text{ H}.$$

Так как $P_2 > P_1$, то равнопрочность обеспечена и несущая способность сварного соединения при переменных нагрузках определяется найденным значением P = 73800 H.

Контрольные вопросы

- 1 Как определяется предел выносливости сварного соединения?
- 2 От каких факторов зависит усталостная прочность сварных конструкций?
- 3 Что такое эффективный коэффициент концентрации напряжений?

Список литературы

- 1 **Николаев, Г. А.** Сварные конструкции. Расчет и проектирование / Г. А. Николаев, В. А. Винокуров. М.: Машиностроение, 1990. 448 с.
- 2 Еврокод 3. Проектирование стальных конструкций. Расчет соединений. Часть 1–8: ТКП EN 1993–1–8–2009. Введ. 10.12.2009. Минск: Минстройархитектуры, 2010.-133 с.
- 3 Еврокод 3. Проектирование стальных конструкций. Часть 1–1. Общие правила и правила для зданий: ТКП EN1993–1–1–2009. Введ.10.12.2009. Минск: Минстройархитектуры, 2010. 95 с.
- 4 Контактная сварка. Соединения сварные. Конструктивные элементы и размеры: ГОСТ 15878–79. Введ. 28.05.79. М.: Гос. ком. СССР по стандартам, 1979. 10 с.
- 5 **Куликов, В. П.** Технология сварки плавлением и термической резки: учебник / В. П. Куликов. 3-е изд., стер. Минск : Новое знание, 2019. 463 с.
- 6 **Катаев, Р. Ф.** Технология конструкционных материалов: теория и технология контактной сварки : учебник / Р. Ф. Катаев, В. С. Милютин, М. Г. Близник ; под науч. ред. М. П. Шалимова. М. : Юрайт, 2025. 146 с.