МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Оборудование и технология сварочного производства»

ПРОЕКТИРОВАНИЕ СВАРНЫХ КОНСТРУКЦИЙ

Методические рекомендации к практическим занятиям для студентов специальности 6-05-0714-03 «Инженерно-техническое проектирование и производство материалов и изделий из них» очной и заочной форм обучения

Часть 2

Могилев 2025

УДК 621.791 ББК 30.4 П79

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Оборудование и технология сварочного производства» «21» апреля 2025 г., протокол № 10

Составитель канд. техн. наук, доц. Д. Н. Юманов

Рецензент канд. техн. наук, доц. М. Н. Миронова

Методические рекомендации к практическим занятиям по дисциплине «Проектирование сварных конструкций» предназначены для студентов специальности 6-05-0714-03 «Инженерно-техническое проектирование и производство материалов и изделий из них» очной и заочной форм обучения.

Учебное издание

ПРОЕКТИРОВАНИЕ СВАРНЫХ КОНСТРУКЦИЙ

Часть 2

Ответственный за выпуск А. О. Коротеев

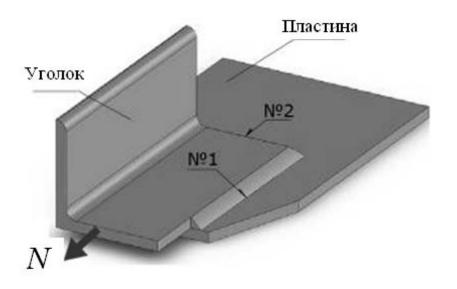
Корректор А. А. Подошевко

Компьютерная верстка Е. В. Ковалевская

Подписано в печать . Формат $60\times84/16$. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 26 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 07.03.2019. Пр-т Мира, 43, 212022, г. Могилев.

© Белорусско-Российский университет, 2025


Содержание

6 Практическое занятие № 6. Расчет сварных соединени	ιй,
выполненных из элементов, имеющих несимметричное сечение	4
7 Практическое занятие № 7. Расчет и подбор сечений двутавровн	οIX
балок	9
8 Практическое занятие № 8. Расчет обратного прогиба тавровн	οIX
сварных балок	17
9 Практическое занятие № 9. Расчет и подбор сечений стоек	И
опорных коробчатых балок	23
10 Практическое занятие № 10. Расчет сварных ферм	. 27
11 Практическое занятие № 11. Расчет конструкций оболочково	ГО
типа	34
Список литературы	41

Часть 2

6 Практическое занятие № 6. Расчет сварных соединений, выполненных из элементов, имеющих несимметричное сечение

Типичным примером сварного соединения из элементов несимметричного сечения является крепление уголков к пластинам. В зависимости от ориентации сварного шва относительно внешней нагрузки выделяют так называемые лобовые (ориентированы перпендикулярно вектору нагрузки) и фланговые (ориентированы вдоль вектора нагрузки) швы (рисунок 6.1).

1 – фланговый сварной шов; 2 – лобовой сварной шов

Рисунок 6.1 – Сварное соединение элементов несимметричного сечения

В таких сварных соединениях внешняя нагрузка между фланговыми швами распределяется в соотношении, обратно пропорциональном расстояниям от центра тяжести сечения уголка до швов.

Задание 1

Рассчитайте крепление двух равнополочных уголков к фасонке толщиной t (таблица 6.1). Расчетное растягивающее усилие в уголках N_{Ed} проходит по линии расположения центра тяжести сечения. Материал — сталь C245, номинальное значение временного сопротивления стали $f_u = 370$ МПа. Способ сварки — механизированная в среде углекислого газа. Выполните чертеж сварного узла, конструктивно определите размеры фасонки, приведите условные обозначения сварных швов и укажите их размеры.

Назначаем катет сварных швов K=6 мм. Данный катет шва технологически целесообразен, т. к. такой шов выполняется сваркой за один проход. Принятый катет на 2 мм меньше, чем толщина полки уголка, однако он больше минимально допустимого катета на 4 мм (таблица 6.2) [2].

Таблица 6.1 – Исходные данные к заданию 1

Номер варианта	Номинальное временное сопротивление f_u , МПа	Размер уголка по ГОСТ 8509, мм	Толщина фасонки <i>t</i> , мм	Сила <i>N_{Ed}</i> , кН
1		$75 \times 75 \times 8$	10	425
2		$80 \times 80 \times 6$	6	360
3	370	$75 \times 75 \times 5$	6	280
4		$70 \times 70 \times 5$	6	220
5		$63 \times 63 \times 4$	6	150

Таблица 6.2 – Минимальные размеры катетов угловых швов в стальных конструкциях

Вид соединения	Вид сварки	Номинальный предел текучести	Минимальный размер катета шва K , мм, при большей толщине из свариваемых элементов t , мм						
	-	стали <i>fy</i> , H/мм²	45	610	1115	1722	2332	3340	4180
Тавровое с двухстрон-		До 285 включ.	4	5	6	7	8	9	10
ними швами,	Ручная дуговая	Св. 285 до 390 включ.	4	5	6	7	8	9	10
нахлесточ- ное, угловое	-	Св. 390 до 590 включ.	5	6	7	8	9	10	12
JIMOBOC		До 285 включ.	3	4	4	5	5	6	6
	Механи- зирован- ная	Св. 285 до 390 включ.	3	4	5	6	7	8	9
		Св. 390 до 590 включ.	4	5	6	7	8	9	10
Тавровое с односто-	Ручная дуговая	До 375 включ.	5	6	7	8	9	10	12
ронними угловыми швами	Механи- зирован- ная	До 375 включ.	4	5	6	7	8	9	10

Примечание — В конструкциях группы 4 по СНиП II-23 минимальный размер катета односторонних угловых швов уменьшают на 1 мм при толщине свариваемых элементов до 40 мм включительно и на 2 мм — при толщине свариваемых элементов свыше 40 мм.

Эффективная толщина сварных швов [2, п. 4.5.2]

$$a_{w} = K \cdot \cos 45 = 6 \cdot \sqrt{2} / 2 = 0,42 \text{ cm}.$$

По упрощенной методике расчета угловых швов [2, п. 4.5.3.3] расчетное сопротивление сварного шва

$$F_{w,Rd} = f_{vw,d} \cdot a_w = \frac{f_u}{\sqrt{3} \cdot \beta_w \cdot \gamma_{M2}} \cdot a_w = \frac{37}{\sqrt{3} \cdot 0.8 \cdot 1.25} \cdot 0.42 = 8.97 \text{ kH/cm}.$$

Расчетные усилия между фланговыми швами распределяем в соотношении обратно пропорциональном расстояниям от центра тяжести сечения уголка до швов:

- по обушку уголка $N_{{}_{Ed.1}}=0,7\cdot425=297,5\,\,\mathrm{кH}$;
- по перу уголка $N_{\rm Ed.2} = 0.3 \cdot 425 = 127.5 \ {\rm kH}$.

Определяем эффективную длину сварного шва по обушку уголка:

$$L_{W1} = \frac{N_{Ed1}}{2F_{W,Rd}} = \frac{297.5}{2 \cdot 8.97} = 16.6$$
 cm.

Тогда конструктивная длина сварного шва по обушку

$$L_{1x} = L_1 + 2 \cdot a_{yy} = 16,6 + 2 \cdot 0,42 = 17,4$$
 cm.

Принимаем $L_{1\kappa} = 18$ см.

Определяем эффективную длину сварного шва по перу уголка:

$$L_{w2} = \frac{N_{Ed2}}{2F_{wR}} = \frac{127.5}{2 \cdot 8.97} = 7.1 \text{ cm}.$$

Тогда конструктивная длина сварного шва по перу:

$$L_{2\kappa} = L_2 + 2 \cdot a_{w} = 7.1 + 2 \cdot 0.42 = 8.79 \text{ cm}.$$

Принимаем L_{2k} = 9 см.

Задание 2

Сконструировать промежуточный узел фермы, состоящей из парных равнополочных уголков (рисунок 6.2).

Исходные данные для расчета представлены в таблице 6.3.

Катеты швов принять равными наименьшей толщине свариваемых деталей. Толщина фасонки равна 10 мм. Материал фермы — сталь C245, номинальное значение временного сопротивления стали $f_u = 370~\mathrm{MHa} = 37~\mathrm{kH/cm^2}$. Способ сварки — механизированная в среде углекислого газа.

Таблица	6	3 _	И	сходные данные к заданию	2
таолица	U.	. э —	II	СХОДНЫЕ Данные к заданию	_

Номер	Длина фасонки]	Нагрузка в элем	ентах фермы, кН	I
варианта	L_{ϕ} , mm	N_1	N_2	N ₃	N_4
1	400	405,9	319,6	124,2	500,9
2		480,3	450	100,4	607
3		580,6	389,3	145,3	542,2
4		669	560	158,3	745
5		520	720,2	178,4	923,6

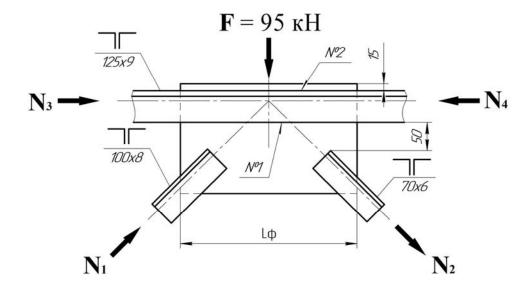


Рисунок 6.2 – Узел сопряжения верхнего пояса фермы с раскосами

Принимаем, что катеты фланговых швов равны между собой, тогда для раскоса № 1 эффективная толщина сварных швов [2, п. 4.5.2]:

$$a_{w1} = K \cdot \cos 45 = 8 \cdot \sqrt{2} / 2 = 0,57$$
 cm.

По упрощенной методике расчета угловых швов [2, п. 4.5.3.3] расчетное сопротивление сварного шва

$$F_{_{w,Rd_1}} = f_{_{VW,d}} \cdot a_{_{w1}} = \frac{f_{_u}}{\sqrt{3} \cdot \beta_{_w} \cdot \gamma_{_{M2}}} \cdot a_{_{w1}} = \frac{37}{\sqrt{3} \cdot 0.8 \cdot 1.25} \cdot 0.57 = 12.18 \text{ kH/cm}.$$

Расчетные усилия между фланговыми швами распределяем в соотношении, обратно пропорциональном расстояниям от центра тяжести сечения уголка до швов:

- по обушку уголка $N^{1}_{Ed_OB} = 0,7 \cdot 405,9 = 284,1 \,\mathrm{kH};$
- по перу уголка $N^{1}_{Ed_{-}\Pi} = 0,3 \cdot 405,9 = 121,8 \text{ кH}.$

Определяем эффективную длину сварного шва по обушку уголка 100×8:

$$L_{w1_OE} = \frac{N_{Ed_OE}^1}{2F_{w_{Rd1}}} = \frac{284,1}{2 \cdot 12,18} = 11,66 \text{ cm}.$$

Тогда конструктивная длина сварного шва по обушку

$$L_{w_1 = OE}^K = L_{1OE} + 2 \cdot a_{w_1} = 11,66 + 2 \cdot 0,57 = 12,8 \text{ cm}.$$

Принимаем $L^{\kappa}_{w1_{-}OB} = 13$ см.

Определяем эффективную длину сварного шва по перу уголка 100×8:

$$L_{w1_\Pi} = \frac{N_{Ed_\Pi}^1}{2F_{W,Rd1}} = \frac{121.8}{2 \cdot 12.18} = 5 \text{ cm}.$$

Тогда конструктивная длина сварного шва по перу уголка 100×8

$$L_{w_{1}}^{K} = L_{1} + 2 \cdot a_{w_{1}} = 5 + 2 \cdot 0.57 = 6,14 \text{ cm}.$$

Принимаем $L^{\kappa}_{w1} = 7$ см.

Аналогично выполняем расчеты для стержня № 2 и результаты сводим в таблицу 6.4.

Таблица 6.4 – Результаты расчета сварных швов

Номер	Сечение	<i>N</i> , кН	Шо	ов по обу	шку	I	Шов по п	еру
стержня	стержня		<i>Noб</i> , кН	К, мм	$L^{\kappa}{}_{W_o\delta}$, cm	<i>N</i> п, кН	К, мм	$L^{\kappa}_{W_{-n}}$, cm
1	100 × 8	405,9	284,13	8	13	121,8	8	7
2	70 × 6	319,6	223,72	6	14	95,88	6	7

Определяем катет шва, прикрепляющего фасонку к верхнему поясу. Нагрузку на данный шов вычисляем следующим образом:

$$N_{\phi} = \sqrt{(N_4 - N_3)^2 + F^2} = \sqrt{(500.9 - 124.2)^2 + 95^2} = 288.5 \text{ kH}.$$

По условию задания длина фасонки составляет 400 мм. Так как катет шва неизвестен, принимаем эффективную длину сварных швов на 1 см меньше ее конструктивной. Тогда эффективная длина сварных швов крепления верхнего пояса фермы к фасонке равна

$$L_w^{\Phi} = 4 (40 - 1) = 156 \text{ cm}.$$

Расчетное сопротивление сварного шва на сдвиг

$$f_{VW,d} = \frac{f_u}{\sqrt{3} \cdot \beta_w \cdot \gamma_{M2}} = \frac{37}{\sqrt{3} \cdot 0.8 \cdot 1.25} = 21.36 \text{ kH/cm}^2.$$

Условие прочности по первому предельному состоянию

$$\frac{N_{\phi}}{a_{w\phi} \cdot L_{\phi}} \le f_{vw,d} .$$

Откуда

$$a_{w\phi} = \frac{N_{\phi}}{f_{VW.d} \cdot L_{\phi}} = \frac{388.5}{21.36 \cdot 156} = 0.116 \text{ cm}.$$

Катет шва

$$K = a_{w1} / \cos 45 = 0.116 \cdot 2 / \sqrt{2} = 0.164 \text{ cm} = 1.64 \text{ mm}.$$

Расчетный катет имеет слишком малое значение, поэтому назначаем катет шва конструктивно. По таблице 6.2 минимально допустимый катет для толщины фасонки 10 мм и заданного способа сварки равен 4 мм.

Контрольные вопросы

- 1 На какие виды подразделяются сварные швы по направлению приложения внешней нагрузки?
- 2 Какие деформации могут возникать при сварке элементов, имеющих несимметричное сечение?
 - 3 Какие факторы влияют на выбор размеров сварных угловых швов?

7 Практическое занятие № 7. Расчет и подбор сечений двутавровых балок

В общем случае расчет балок включает следующую последовательность действий: определение опорных реакций и построение эпюр силовых факторов (изгибающего момента M и поперечной силы Q); определение максимальных значений силовых факторов и соответствующих сечений; проверка несущей способности полок и стенки балки; проверка на местную и общую устойчивость; расчет сварных соединений.

Согласно [3, п. 5.5.2] различают четыре класса поперечных сечений, классификация которых зависит от отношения ширины к толщине (c/t) частей сечения, расположенных в его сжатой зоне:

1) поперечные сечения класса 1 — те, в которых может образоваться пластический шарнир с вращательной способностью, требуемой для пластического расчета и достигаемой без снижения несущей способности;

- 2) поперечные сечения класса 2 те, в которых могут развиваться пластические деформации, но в которых ограничена вращательная способность вследствие потери местной устойчивости;
- 3) поперечные сечения класса 3 те, в которых напряжение в крайних сжатых волокнах стального элемента при упругом распределении напряжений может достигнуть предела текучести, но потеря местной устойчивости препятствует развитию пластических деформаций;
- 4) поперечные сечения класса 4 те, в которых потеря местной устойчивости наступает до достижения предела текучести в одной или более зонах поперечного сечения.

Задание

Проведите проверку прочности и устойчивости изгибаемого элемента со следующими характеристиками:

- пролет L, шарнирное закрепление балки по концам, составное двутавровое сечение (рисунок 7.1), поясные швы выполнены катетом K (таблица 7.1);
 - балка нагружена равномерно распределенной нагрузкой q;
 - геометрические характеристики сечения представлены в таблице 7.2.

Материал балки — сталь C255 по ГОСТ 277—72 с пределом текучести материала $f_y = 235$ МПа при толщине проката $20 < t \le 40$ мм, $f_y = 245$ МПа при толщине проката $10 < t \le 20$ мм и пределом прочности $f_u = 360$ МПа. Коэффициенты надежности: $\gamma_{M0} = 0.931$, $\gamma_{M1} = 1.08$, $\gamma_{M2} = 1.25$.

Анализ эпюр силовых факторов (см. рисунок 7.1, δ) показывает, что максимальные значения поперечной силы и изгибающего момента от равномерно распределенной нагрузки соответственно равны $Q = V_{Ed} = 1422$ кH, $M_{Ed} = 3199,5$ кH·м.

Определяем класс сечения. Для этого рассчитываем коэффициент ϵ , зависящий от f_y :

$$\varepsilon_{nonku} = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1. \tag{7.1}$$

Таблица 7.1 – Исходные данные к заданию

Номер вари- анта	Пролет L , м	Распределенная нагрузка <i>q</i> , кН/м	Высота балки <i>h</i> , см	Высота стенки h_w , см	Ширина полки <i>b</i> _f , см	Толщина полки <i>ty</i> , см	Толщина стенки <i>t</i> _w , см	Катет К, см
1	10	129	80	77,6	10	1,2	1,2	1
2	15	120	84	82,4	12	0,8	0,8	0,6
3	25	130	86	84	16	1,0	1,0	1,2
4	30	132	100	98,8	18	0,6	0,6	0,7
5	20	128	110	107,6	20	1,2	1,2	1,1

Таблица 7.2 – Геометрические характеристики составного двутаврового сечения

Номер варианта	инер относи центра	тельно	Момент сопротивления изгибу относительно центральных осей, см ³		Момент инерции при свободном кручении, см ⁴	Статичес- кий момент полусе- чения, см ³	Секториальный момент инерции поперечного сечения, см ⁶
	I_y	I_z	W_{y}	W_z	I_t	S_y	I_{w}
1	990879	26684,5	15362,5	1334,2	488	8631,4	10675,3
2	659237	18300,3	10987,3	963,2	241,3	6166	6370,35
3	1228254	21873,2	18896,2	1367,1	1476,9	10668,7	8681,5
4	849154	8806,1	12866	677,39	540,6	7412,4	3663,6
5	995233	23338,2	15550,5	1296,6	688,7	8610,5	9116,5

Ширина частей сечения полки

$$c_{nonku} = \frac{b_f - (t_w + 2 \cdot K)}{2} = \frac{10 - (1, 2 + 2 \cdot 1)}{2} = 3,4 \text{ cm};$$

$$\frac{c_{nonku}}{t_f} = \frac{3.4}{1.2} = 2.83 < 9 \cdot \varepsilon_{nonku} = 9 \cdot 1 = 9$$
, следовательно, полка относится к

сечению класса 1 [3, таблица 5.2].

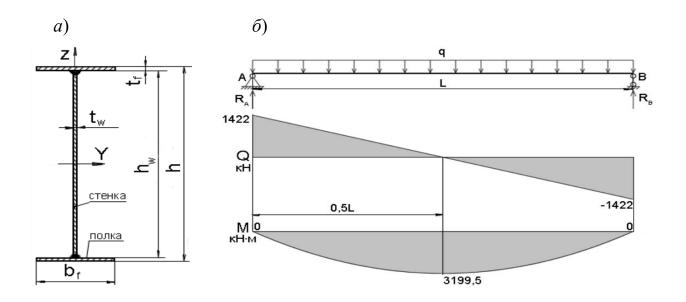


Рисунок 7.1 – Расчетное сечение балки (*a*) и эпюры силовых факторов (*б*)

Определяем класс сечения стенки:

$$c_{\rm cmehku} = h_{\rm w} - 2 \cdot K = 77, 6 - 2 \cdot 1 = 74,6$$
 см;

$$\varepsilon_{cmehku} = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{245}} = 0,98;$$

$$83 \cdot \varepsilon_{cmehku} = 81,34 < \frac{c_{cmehku}}{t_w} = \frac{74,6}{1,2} = 62,16 < 124 \cdot \varepsilon_{cmehku} = 121,52$$
.

Стенка относится к сечению класса 3 [3, таблица 5.2].

Поперечное сечение классифицируется по наивысшему (наименее благоприятному) классу его сжатых частей. Поэтому все поперечное сечение балки относим к классу 3.

Для третьего класса сечений проверку несущей способности на изгиб без учета влияния поперечной силы (в расчетном сечении она равна нулю) проводим по формуле [3, п. 6.2.5]

$$M_{Rd} = \frac{W_y \cdot f_y}{\gamma_{M0}} = \frac{15362,5 \cdot 10^{-6} \cdot 235 \cdot 10^3}{0,931} = 3877,8 \text{ kH·m}; \tag{7.2}$$

$$\frac{M_{Ed}}{M_{Pd}} = \frac{3199.5}{3877.8} = 0.825 < 1. \tag{7.3}$$

Несущая способность на изгиб обеспечена.

Проверку несущей способности на сдвиг в упругой стадии проводим по формуле [3, п 6.2.6]

$$\frac{\tau_{Ed}}{f_{v}/(\sqrt{3}\cdot\gamma_{M0})} \le 1,\tag{7.4}$$

где τ_{Ed} – касательные напряжения, МПа.

Касательные напряжения по формуле Журавского

$$\tau_{Ed} = \frac{V_{Ed} \cdot S_y}{I_y \cdot t_w} = \frac{1422 \cdot 10^3 \cdot 8631, 4 \cdot 10^{-6}}{990879 \cdot 10^{-8} \cdot 12 \cdot 10^{-3}} = 1,03 \cdot 10^8 \text{ }\Pi\text{a} = 103 \text{ }M\Pi\text{a}, \tag{7.5}$$

где S_y — статический момент сдвигаемой части сечения относительно центральной оси;

 I_{y} – момент инерции поперечного сечения;

 t_w – толщина сечения в рассматриваемой точке.

Несущая способность на сдвиг по формуле (7.4) обеспечена:

$$\frac{103}{245/(\sqrt{3}\cdot 0.931)} = 0.68 \le 1.$$

Проверку общей устойчивости балки проводим по формуле [3, п. 6.3.2]:

$$\frac{M_{Ed}}{M_{b,Rd}} \le 1,\tag{7.6}$$

где $M_{_{b,Rd}}$ — расчетное значение несущей способности изгибаемого элемента по устойчивости плоской формы изгиба для элементов, не раскрепленных из плоскости действия изгибающего момента,

$$M_{b,Rd} = \chi_{LT} \cdot W_{Y} \cdot \frac{f_{y}}{\gamma_{M1}}, \tag{7.7}$$

где χ_{LT} — понижающий коэффициент при потере устойчивости плоской формы изгиба.

Определяем критический момент потери устойчивости плоской формы изгиба симметричного сечения в упругой стадии по следующей зависимости:

$$M_{cr} = C_1 \cdot \frac{\pi^2 E I_z}{(k_z L)^2} \cdot \sqrt{\left(\frac{k_z}{k_w}\right)^2 \cdot \frac{I_w}{I_z} + \frac{(k_z L)^2 \cdot G \cdot I_t}{\pi^2 E I_z} + (C_2 Z_g)^2 - C_2 Z_g}, \quad (7.8)$$

где L — расстояние между точками элемента, в которых он раскреплен от бокового смещения;

E – модуль Юнга, $E = 2,1 \cdot 10^5 \text{ H/мм}^2$;

G – модуль сдвига, $G = 0.81 \cdot 10^5 \text{ H/мм}^2$;

 C_1 , C_2 – коэффициенты, зависящие от внешней нагрузки, действующей на элемент, и условия раскрепления концов элемента, C_1 = 1,12, C_2 = 0,45;

 k_z — коэффициент, учитывающий условия закрепления концов элемента от поворота относительно оси z-z;

 k_{w} — коэффициент, учитывающий условия закрепления концов элемента от депланации;

 $Z_{\rm g}$ – координата точки приложения внешней нагрузки относительно центра сдвига (изгиба) сечения.

Так как опорные части балки не закреплены от изгиба и депланации, принимаем $k_z = k_w = 1$. Координата центра тяжести сечения совпадает с центром изгиба, следовательно, $Z_g = 0$.

Тогда

$$M_{cr} = 1,12 \cdot \frac{3,14^2 \cdot 2,1 \cdot 10^{11} \cdot 26684,5 \cdot 10^{-8}}{(1 \cdot 9)^2} \times$$

$$\times \sqrt{\left(\frac{1}{1}\right)^2 \cdot \frac{10675, 3 \cdot 10^4 \cdot 10^{-12}}{26684, 5 \cdot 10^{-8}} + \frac{(1 \cdot 9)^2 \cdot 0, 81 \cdot 10^5 \cdot 488 \cdot 10^{-8}}{3.14^2 \cdot 2, 1 \cdot 10^{11} \cdot 26684, 5 \cdot 10^{-8}} = 4832 \text{ kH} \cdot \text{m}.$$

Определяем значение условной гибкости:

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_y \cdot f_y}{M_{cr}}} = \sqrt{\frac{15362, 5 \cdot 10^{-6} \cdot 235 \cdot 10^6}{4832 \cdot 10^3}} = 0,864.$$
 (7.9)

Сварные двутавровые сечения теряют устойчивость по кривой c (рисунок 7.2) при $\frac{h}{b_f} \le 2$ или по кривой d (рисунок 7.2) при $\frac{h}{b_f} > 2$.

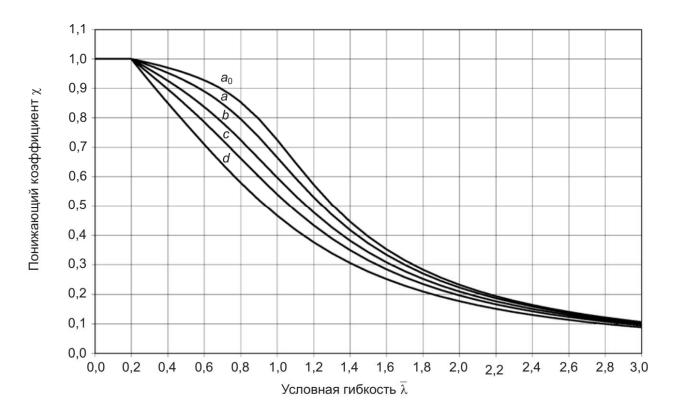


Рисунок 7.2 – Кривые потери устойчивости (зависимости значений понижающего коэффициента от условной гибкости)

В рассматриваемом случае $\frac{h}{b_f} = \frac{129}{40} = 3,225 > 2$, принимаем кривую потери устойчивости d. Тогда коэффициент, учитывающий начальные несовершенства, $\alpha_{LT} = 0,76$ [3, таблица 6.3].

Определяем значение Φ_{LT} в соответствии с [3, п. 6.3.2.2]:

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \cdot (\overline{\lambda_{LT}} - 0.2) + \overline{\lambda_{LT}}^{2} \right] = 0.5 \cdot \left[1 + 0.76 \cdot (0.864 - 0.2) + 0.864^{2} \right] = 1.125;$$

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^{2} - \overline{\lambda_{LT}}^{2}}} = \frac{1}{1.125 + \sqrt{1.125^{2} - 0.864^{2}}} = 0.54.$$

По формуле (7.7) получаем

$$M_{b,Rd} = 0.54 \cdot 15362, 5 \cdot 10^{-6} \cdot \frac{235 \cdot 10^{6}}{1.08} = 1805 \text{ kH} \cdot \text{M}.$$

Проверку общей устойчивости балки проводим по формуле (7.6):

$$\frac{3199,5}{1805} = 1,77 > 1.$$

Общая устойчивость изгибаемого элемента не обеспечена.

Раскрепляем верхний сжатый пояс элемента горизонтальными связями (распорками) с шагом 3 м. Устойчивость плоской формы изгиба элементов с дискретным боковым раскреплением сжатых полок обеспечена, если удовлетворяется условие [3, п. 6.3.2.4]:

$$\overline{\lambda_f} = \frac{k_c \cdot L_c}{i_{f,z} \cdot \lambda_1} \le \overline{\lambda_{c,0}} \cdot \frac{M_{c,Rd}}{M_{y,Ed}}, \qquad (7.10)$$

где k_c – поправочный коэффициент для данной эпюры момента, $k_c = 0.94$;

 L_c – расстояние между точками закрепления, L_c = 3 м;

 $i_{f,z}$ — радиус инерции эквивалентной сжатой полки, состоящей из сжатой полки плюс 1/3 сжатой части площади поперечного сечения стенки, относительно второстепенной оси сечения;

 λ_1 – результирующая гибкость эквивалентной сжатой полки;

 $M_{y,Ed}$ — максимальное расчетное значение изгибающего момента между точками раскрепления относительно оси y–y, $M_{y,Ed}$ = M_{Ed} = 3200 кH·м;

 $\overline{\lambda_{_{c,0}}}$ — предельное значение условной гибкости.

Площадь сечения, состоящего из сжатой полки и 1/3 сжатой части площади стенки:

$$\mathbf{A}_{f,z} = b_f \cdot t_f + \frac{1}{3} \cdot h_w \cdot t_w = 0.1 \cdot 0.012 + \frac{1}{3} \cdot 7.76 \cdot 0.012 = 322.4 \cdot 10^{-4} \text{ M}^2.$$

Момент инерции сечения, состоящего из сжатой полки и 1/3 сжатой части площади стенки:

$$I_{f,z} = \frac{1}{12}b_{f}^{3} \cdot t_{f} + \frac{1}{12} \cdot \frac{1}{3} \cdot h_{w} \cdot t_{w}^{3} = \frac{1}{12} \cdot 10^{3} \cdot 1, 2 + \frac{1}{12} \cdot 1, 2^{3} \cdot \frac{77,6}{3} = 100,53 \text{ cm}^{4}.$$

Радиус инерции эквивалентной сжатой полки

$$i_{f,z} = \sqrt{\frac{I_{f,z}}{A_{f,z}}} = \sqrt{\frac{100,53 \cdot 10^{-8}}{322,4 \cdot 10^{-4}}} = 0,0055 \,\mathrm{m}.$$

Результирующая гибкость эквивалентной сжатой полки

$$\lambda_1 = \pi \cdot \sqrt{\frac{E}{f_y}} = 3,14 \cdot \sqrt{\frac{2,1 \cdot 10^5}{235}} = 93,9.$$

По [3, п. 6.3.2.4]

$$\overline{\lambda_{c,0}} = \overline{\lambda_{IT,0}} + 0.1 = 0.2 + 0.1 = 0.3,$$

где $\overline{\lambda_{LT,0}}$ — прямолинейный участок кривых потери устойчивости плоской формы изгиба для прокатных сечений (см. рисунок 7.2).

Расчетное значение несущей способности на изгиб относительно одной из главных осей поперечного сечения

$$M_{c,Rd} = W_y \cdot \frac{f_y}{\gamma_{M1}} = 15362,3 \cdot 10^{-6} \frac{235}{1,08} = 3342,77 \text{ kH} \cdot \text{m}.$$

Общая устойчивость балки при раскреплении верхнего пояса горизонтальными связями через 3 м обеспечена, т. к. выполняется условие формулы (7.10):

$$\overline{\lambda_f} = \frac{0.94 \cdot 3}{0.094 \cdot 93.9} = 0.31 \le 0.3 \cdot \frac{3342,77}{3199.5} = 0.31.$$

Пояса балок соединяются со стенкой с помощью угловых швов с минимальным катетом, равным $K_{\min} \ge 0.5t_w$. Под действием изгибающего момента в поясных швах возникают нормальные напряжения, которые считаются связующими, и касательные напряжения, которые считаются рабочими.

Для одностороннего углового шва без разделки кромок толщина сечения в рассматриваемой точке

$$a_w = K \cdot \cos 45 = 10 \cdot \sqrt{2} / 2 = 7 \text{ MM}.$$

Расчетное значение внешних усилий в поясных швах балки на единицу длины [2]

$$F_{W,Ed} = \frac{V_{Ed} \cdot S_{yf}}{I_v} = \frac{1422 \cdot 10^3 \cdot 472, 8 \cdot 10^{-6}}{990879 \cdot 10^{-8}} = 67,8 \text{ kH/m} = 0,6 \text{ kH/cm}, \tag{7.11}$$

где S_{yf} – статический момент инерции полки относительной центральной оси,

$$S_{yf} = b_f \cdot t_f \cdot (0.5h_w + 0.5t_f) = 10 \cdot 1.2 \cdot (0.5 \cdot 77.6 + 0.5 \cdot 1.2) = 472.8 \text{ cm}^3. \quad (7.12)$$

Расчетную несущую способность сварного соединения $F_{w,Rd}$ с двумя угловыми швами определяем по следующей формуле:

$$F_{w,Rd} = \frac{f_u}{\sqrt{3} \cdot \beta_w \cdot \gamma_2} \cdot 2 \cdot a_w = \frac{36}{\sqrt{3} \cdot 0.8 \cdot 1.25} \cdot 2 \cdot 0.7 = 29 \text{ kH/cm}.$$

Тогда

$$F_{w,Ed} = 0.6 \text{ kH/cm} < F_{w,Rd} = 29 \text{ kH/cm}.$$

Проверка прочности двухстороннего шва выполнена с большим запасом, целесообразно уменьшение катета швов до минимально рекомендованного значения K=5 мм. Тогда получаем

$$a_{_W} = K \cdot \cos 45 = 5 \cdot \sqrt{2} / 2 = 4,2 \text{ mm};$$

$$F_{_{W,Rd}} = \frac{f_{_u}}{\sqrt{3} \cdot \beta_{_W} \cdot \gamma_{_{M2}}} \cdot 2 \cdot a_{_W} = \frac{36}{\sqrt{3} \cdot 0,8 \cdot 1,25} \cdot 2 \cdot 0,42 = 17,6 \text{ kH/cm};$$

$$F_{_{W,Rd}} = 0,6 \text{ kH/cm} < F_{_{W,Rd}} = 17,6 \text{ kH/cm}.$$

Швы, которыми привариваются ребра жесткости, являются связующими и расчету не подлежат.

Контрольные вопросы

- 1 Какие внутренние силовые факторы возникают при работе сварных балок?
- 2 Какие деформации могут возникать при сварке тавровых и двутавровых балок?
 - 3 Что такое потеря устойчивости сварного таврового сечения?

8 Практическое занятие № 8. Расчет обратного прогиба тавровых сварных балок

В балках наиболее существенны в практическом отношении следующие виды перемещений: изгиб, закручивание, грибовидность полос и потеря устойчивости. Изгиб балок возникает от продольных и поперечных швов.

Величина изгиба сварной тавровой и двутавровой балки в значительной степени зависит от количества и мест расположения сварных швов.

Изгибы от продольных швов можно определить, используя величины фиктивных усадочных сил. Величину усадочной силы в зависимости от количества швов и конструкции балки (тавр, двутавр) можно определить по формулам

$$P_1 = 1.7 \frac{q}{v_{CB}}, \tag{8.1}$$

ИЛИ

$$P_2 = 1.7DK^2; (8.2)$$

$$P_3 = (1,15...1,17)P_1,$$
 (8.3)

или

$$P_4 = 1,15P_2; (8.4)$$

$$P_5 = 2P_3,$$
 (8.5)

ИЛИ

$$P_6 = 2P_4, (8.6)$$

где K – катет шва, см;

D — коэффициент, при ручной сварке D = 40000, при автоматической сварке D = 30000;

q – мощность дуги, $q=0.24 \cdot I \cdot U$;

 v_{CB} – скорость сварки, см/с;

I – сварочный ток, A;

При сварке прерывистым швом усадочная сила от каждого участка шва

$$P_{y_{1.\Pi PEP}} = P_{1,2} \cdot \frac{t_{u}}{t}, \tag{8.7}$$

где t_{uu} – длина участка шва;

t — шаг прерывистого шва.

Общая усадочная сила от прерывистого шва

$$P_{yy.OBIII} = P_{yy.\Pi PEP} \cdot n, \qquad (8.8)$$

где n — количество участков прерывистого шва.

Величина укорочения балки после сварки

$$\Delta_T = \frac{P_{yq} \cdot L}{E \cdot F},\tag{8.9}$$

где F – площадь сечения, см²

E – модуль упругости, $E = 2,1 \cdot 10^5 \text{ M}\Pi a$;

L – длина шва.

В формуле (8.9) P_{YY} определяется по формуле (8.1) или (8.2) после наложения первого шва в тавровом соединении и по формуле (8.3) или (8.4) после наложения двух швов.

В формуле (8.9) P_{yy} соответствует величинам $P_{1,2}$ и $P_{3,4}$, отражающим порядок и количество наложения швов. Индексы указывают, по какой из формул определяется усадочная сила.

При сварке двутавровой балки играет роль последовательность сборки и сварки поясных швов. Если балка собирается сразу (стенка и две полки) и производится прихватка, то в формуле (8.9) за площадь сечения принимается все сечения, а усадочная сила берется $P_{5,6}$. Если же собирается тавр и осуществляется сварка двух швов, то сначала рассчитывают укорочения от двух швов (площадь сечения F соответствует сечению тавра), затем рассчитывается укорочение от двух других швов (усадочная сила $P_{3,4}$), а за площадь сечения принимают все сечения двутавра. Сумма двух расчетов составит общее укорочение балки.

При сварке балки происходит продольный изгиб.

Для балки таврового сечения продольный изгиб определяется по формуле

$$\gamma_{IIP} = \frac{P_{VV} \cdot e \cdot L^2}{8 \cdot E \cdot J},\tag{8.10}$$

где P_{yy} — усадочная сила, рассчитывается по формулам (8.7)—(8.10), с индексом 1 или 2 при наложении одного шва и индексами 3 или 4 после наложения двух швов;

L — длина шва;

J – момент инерции, см⁴;

e – расстояние от центра тяжести сечения до центра тяжести швов.

После сварки двутавровой балки общий прогиб при последовательной сборке и сварке

$$\gamma_{o\tilde{o}} = \gamma_1 - \gamma_2$$

где γ_1 — прогиб балки от первого и второго швов (усадочная сила $P_{1,2}$), площадь сечения равна сечению тавра;

 γ_2 — прогиб балки от третьего и четвертого швов (усадочная сила $P_{3,4}$), площадь сечения всего двутавра.

Для определения момента инерции требуется знать место положения центра тяжести сечения. Для двутавровой балки центр сечения находится в центре сечения балки.

Для тавровой балки при расположении осей координат, как указано на рисунке 8.1, координату центра тяжести сечения вычисляем по формуле

$$y_c = \frac{S_x}{F},$$

где F – площадь всего сечения тавра, см²; S_x – статический момент, см³,

$$S_x = b \cdot \delta_1 \cdot \left(\frac{b}{2} + \delta_2\right) + a \cdot \delta_2 \cdot \frac{\delta_2}{2}$$
.

Момент инерции сечения тавровой балки

$$J = \frac{\delta_1 \cdot b^3}{12} + \delta_1 \cdot b \cdot \left(\frac{b}{2} + \delta_2 - y_c\right)^2 + \frac{a \cdot \delta_2^3}{12} + \delta_2 \cdot a \cdot \left(y_c - \frac{\delta_2}{2}\right)^2.$$

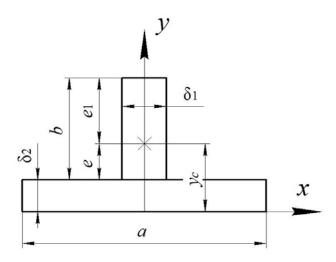


Рисунок 8.1 – Геометрические характеристики тавровой балки

Расстояние от центра тяжести сечения до центра тяжести шва в грубых расчетах может быть рассчитано по формуле

$$e = y_c - \delta_2 - \frac{K}{2},$$

где K – катет сварного шва, мм.

При наплавке шва на кромку полки прогиб балки осуществляется в обратную сторону. В формуле (8.10) необходимо принять

$$e_1 = b + \delta_2 - y_c.$$

Суммарный прогиб от наложения двух поясных швов на кромку стенки составит разность прогибов от поясных швов минус прогиб от шва наплавленного на кромку стенки.

При сварке тавровых и двутавровых балок возникает поперечная и угловая деформация (грибовидности полок).

При расчете необходимого обратного выгиба или усилия прижатия балки принимают нагрузку q на кромку балки как равномерно распределенную согласно рисунку 8.2.

При этом прогиб балки под действием такой нагрузки

$$f_1 = \frac{q \cdot L^4}{E \cdot J} \cdot \frac{5}{384} ,$$

где L – длина балки, мм;

E – модуль упругости материала балки, МПа;

J – момент инерции сечения балки, мм⁴.

Прогиб балки от усадочной силы

$$f_2 = \frac{P_{yc} \cdot e_0 \cdot L^2}{8 \cdot E \cdot J}.$$

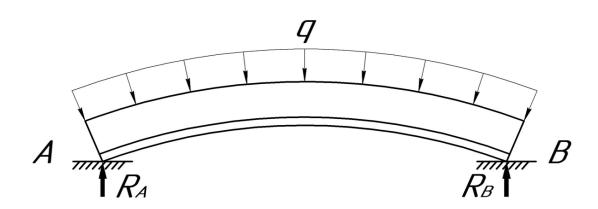


Рисунок 8.2 – Схема нагружения балки

Для предотвращения деформации изгиба прогибы балки от действия усадочной силы и внешней нагрузки должны быть равны:

$$f_1 = f_2$$
.

Тогда

$$q = 9.6 \cdot \frac{P_{yc} \cdot e}{L^2}.$$

Полная нагрузка на балку

$$Q = q \cdot L = \frac{9.6 \cdot P_{yc} \cdot e}{L}.$$

Для случая создания обратного выгиба необходимое усилие (рисунок 8.3)

$$Q_{1} = \frac{48 \cdot f \cdot E \cdot J}{L} \cdot$$

Если в месте приложения силы Q_1 (по схеме на рисунке 8.3) в пределах балки установить упор, то по концам балки для создания требуемого выгиба балки следует приложить усилие

$$R_{A}=R_{B}=\frac{Q_{1}}{2}.$$

Для схемы, показанной на рисунке 8.4, если в месте приложения Q_2 и Q_3 установить упор, то можно определить необходимые значения R_A и R_B .

$$Q_1 = Q_2 = \frac{3P_{yc} \cdot e \cdot L^2}{c \cdot (3L^2 - 4c^2)}.$$

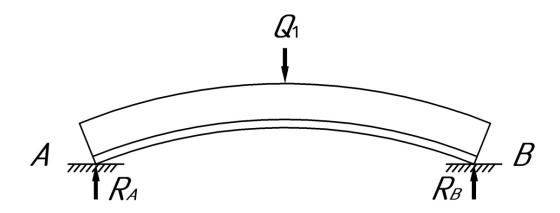


Рисунок 8.3 — Расчетная схема балки с силой Q_1

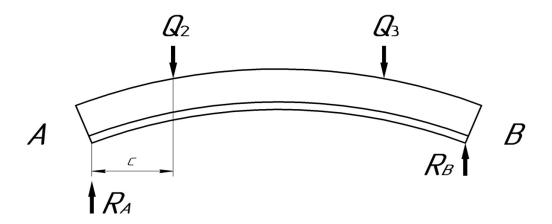


Рисунок 8.4 — Расчетная схема балки с силами Q_2 и Q_3

Полученные значения сил R_A , R_B , Q_2 , Q_3 могут быть основой для расчета прижимов сборочно-сварочных приспособлений.

Задание

Определите величину прогиба балок для случая схем (см. рисунки 8.2–8.4) (значения величин L, e, P_{yc} задает преподаватель, а величину c принять равной 100 мм).

Контрольные вопросы

- 1 Как определяется величина прогиба сварной балки?
- 2 Какие деформации могут возникать при сварке тавровых и двутавровых балок?
- 3 Какие факторы влияют на величину деформаций и перемещений при сварке тавровых и двутавровых балок?

9 Практическое занятие № 9. Расчет и подбор сечений стоек и опорных коробчатых балок

Стойка (колонна) — вертикальный элемент конструкции, работающий преимущественно на сжатие. Стойки передают нагрузку от вышележащих конструкций (балок, ферм) на фундамент. В стойках различают три основные части: верхнюю — оголовок, воспринимающий нагрузку; среднюю — стержень, несущий нагрузку; нижнюю — базу, передающую давление стойки на фундамент.

Сжатые элементы бывают условно центрально-сжатыми (продольная сжимающая сила действует по оси элемента) и внецентренно-сжатыми (продольная сила приложена с эксцентриситетом относительно вертикальной оси элемента или на элемент воздействует продольная сила и изгибающий момент совместно).

Задание

Провести расчет центрально-сжатой колонны высотой L, нагруженной расчетной нагрузкой N_{Ed} (таблица 9.1). В сечении колонны принять трубу из стали S235 по ГОСТ 277–72 с пределом текучести $f_y = 225$ МПа при толщине фасонного проката $t \le 10$ мм и пределом прочности $f_u = 370$ МПа [3, таблица 2]. Коэффициенты надежности принять $\gamma_{M0} = 1$, $\gamma_{M1} = 1$. Схемы закрепления концов колонны представлены на рисунке 9.1.

Таблица 9.1 – Исходные данные к заданию

Номер варианта	Высота L , м	Нагрузка N_{Ed} , кН	Номер схемы закрепления
1	4,65	307	1
2	8	250	1
3	6,4	367	2
4	5,2	520	3
5	3,5	280	4

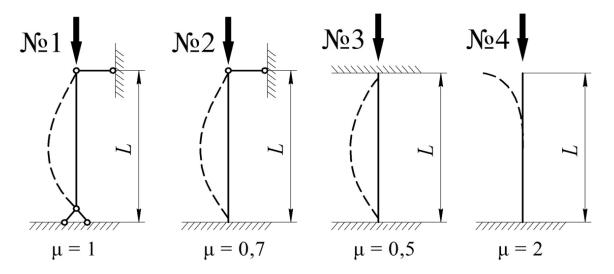


Рисунок 9.1 – Схемы закрепления

В первом приближении подбор сечения стержня колонны осуществляем следующим образом:

$$A = \frac{N_{Ed}}{0.6 \cdot f_{v} / \gamma_{M0}} = \frac{307 \cdot 10^{3}}{0.6 \cdot 225 \cdot 10^{6} / 1} = 2.27 \cdot 10^{-3} \text{ m}^{2} = 2270 \text{ mm}^{2}.$$
 (9.1)

Согласно ГОСТ 10705–80 *Трубы стальные электросварные*. *Сортамент* выбираем трубу диаметром d=180 мм и толщиной стенки t=4 мм, которая имеет площадь сечения $A_1=22,1$ см². Рассчитаем геометрические характеристики данного сечения.

Момент инерции

$$I = I_y = I_z = \frac{\pi (d^4 - (d - 2t)^4)}{64} = \frac{3,14 \cdot (180^4 - (180 - 2 \cdot 4)^4)}{64} = 8,57 \cdot 10^6 \text{ MM}^4.$$
 (9.2)

Радиус инерции

$$r = r_y = r_z = \sqrt{\frac{I}{A_1}} = \sqrt{\frac{8,57 \cdot 10^6}{2,21 \cdot 10^3}} = 62,2 \text{ MM}.$$
 (9.3)

Для определения класса сечения вычисляем безразмерный критерий

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{225}} = 1,02.$$

Так как выполняется следующее условие, сечение относим к первому классу [3, таблица 5.2]:

$$\frac{d}{t} = \frac{180}{4} = 45 \le 50 \cdot \varepsilon^2 = 50 \cdot 1,02^2 = 52,02.$$

Находим расчетную длину колонны при проверке устойчивости исходя из схемы закрепления и соответствующего коэффициента приведенной длины μ:

$$L_{cr} = L \cdot \mu = 4,65 \cdot 1 = 4,65 \text{ M}.$$
 (9.4)

Прочность центрально-сжатого элемента считается обеспеченной при выполнении условия

$$\frac{N_{Ed}}{N_{c,Rd}} \le 1. \tag{9.5}$$

Расчетное значение несущей способности сечения класса 1

$$N_{c,Rd} = \frac{A_1 \cdot f_y}{\gamma_{M0}} = \frac{22,1 \cdot 10^{-4} \cdot 225 \cdot 10^6}{1} = 497,7 \text{ KH}.$$
 (9.6)

Несущая способность сечения по прочности обеспечена, т. к. выполняется условие формулы (9.5):

$$\frac{N_{Ed}}{N_{c,Rd}} = \frac{307}{497,7} = 0.62 \le 1.$$

Общая устойчивость колонны при центральном сжатии определяется выполнением следующего условия:

$$\frac{N_{Ed}}{N_{b,Rd}} \le 1,\tag{9.7}$$

где $N_{b,Rd}$ — расчетное значение несущей способности сжатого элемента по устойчивости.

Для сечения класса 1

$$N_{b,Rd} = \chi \frac{A_1 \cdot f_y}{\gamma_{M1}}, \tag{9.8}$$

где χ — понижающий коэффициент устойчивости, который зависит от геометрических параметров сечения, предела текучести и модуля упругости стали.

При центральном сжатии элементов значение χ в зависимости от условной гибкости $\overline{\lambda}$ следует определять по соответствующей кривой потери устойчивости или по формуле

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \quad \text{при } \chi \le 1. \tag{9.9}$$

В рассматриваемом случае для трубы из горячекатаной стали находим, что искомой кривой потери устойчивости является кривая a [3, таблица 6.2].

Условная гибкость для поперечных сечений класса 1

$$\bar{\lambda} = \frac{L_{cr}}{I} \cdot \frac{1}{\lambda_1} = \frac{465}{8,57} \cdot \frac{1}{95,9} = 0,56.$$
 (9.10)

Значение гибкости

$$\lambda_1 = \pi \cdot \sqrt{\frac{E}{f_y}} = 3,14 \cdot \sqrt{\frac{2,1 \cdot 10^5}{225}} = 95,9.$$

Коэффициент, учитывающий начальные несовершенства, $\alpha = 0.21$ [3, таблица 6.1]. Определяем значение Φ в соответствии с [3, п. 6.3.1.2]:

$$\Phi = 0.5 \cdot \left[1 + \alpha \cdot (\overline{\lambda} - 0.2) + \overline{\lambda}^2 \right] = 0.5 \cdot \left[1 + 0.21 \cdot (0.56 - 0.2) + 0.56^2 \right] = 0.69;$$

$$\chi = \frac{1}{0.69 + \sqrt{0.69^2 - 0.56^2}} = 0.91.$$

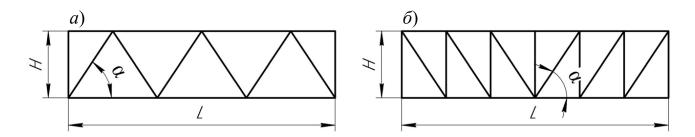
Следовательно, по формуле (9.8)

$$N_{b,Rd} = 0.91 \cdot \frac{22,12 \cdot 10^{-4} \cdot 225 \cdot 10^{6}}{1} = 452,9 \text{ kH}.$$

Несущая способность по устойчивости при изгибе обеспечена:

$$\frac{N_{Ed}}{N_{h,Pd}} = \frac{307}{452.9} = 0.68 \le 1.$$

Как видно из расчета, заданное сечение колонны принято с достаточно большим запасом по прочности и устойчивости (формулы (9.5) и (9.7)). В реальном проектировании параметры сечений подбирают таким образом, чтобы достигнуть максимальной экономичности решений. Поэтому предварительная площадь сечения A_1 , выбранная в первом приближении, требует корректировки.


Контрольные вопросы

- 1 На восприятие каких нагрузок рассчитываются колонны для зданий и сооружений?
 - 2 Что такое потеря устойчивости сечения колонны?
 - 3 Как определить несущую способность колонны?

10 Практическое занятие № 10. Расчет сварных ферм

Фермами называют решетчатые конструкции, работающие на изгиб. Элементы фермы (пояса, раскосы, стойки и т. д.) испытывают только продольные растягивающие или сжимающие нагрузки. По схемам решетки различают фермы с треугольной (рисунок 10.1, a) и раскосной (рисунок 10.2, δ) решетками. Эти решетки являются основными.

Исходными данными для проектирования являются пролет фермы и нагрузки. Проектирование начинают с определения высоты фермы и геометрической системы. Оптимальную высоту фермы устанавливают в зависимости от ее пролета и типа решетки. Для стропильных ферм характерно отношение L/H=6...8. Угол наклона раскосов $\alpha=45^\circ$ для конструкций с треугольной решеткой и 33°...55° с раскосной. На практике высоту фермы следует увязывать с габаритами транспортных средств. При перевозке по железной дороге наибольший размер конструкции по вертикали равен 3,8 м, по горизонтали — 3,2 м, а по длине — 13 м для одной четырехосной платформы. Фермы длиной пролета 18 м поставляются на монтаж целиком; при пролетах 24 и 30 м — в виде двух отправочных частей длиной 12 и 15 м; при пролетах 36 м — в виде трех частей длиной 12 м.

a — ферма с треугольной решеткой; δ — ферма с раскосной решеткой; L — длина пролета фермы; H — высота фермы; α — угол наклона раскосов

Рисунок 10.1 – Основные параметры плоских ферм

Последовательность расчета ферм.

1 Составление расчетной схемы с приведением распределенных нагрузок к сосредоточенным в узлах (рисунок 10.2):

$$P = q d, (10.1)$$

где q – расчетная погонная нагрузка, H/M;

d – расстояние между узлами верхнего пояса, м.

Дополнительные усилия, действующие на ферму, принимают в соответствии с техническим заданием (снеговая, нагрузка от веса подъемно-транспортного оборудования, собственный вес и т. д.).

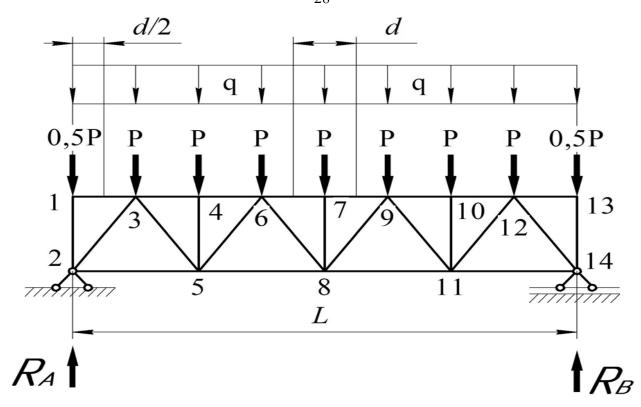


Рисунок 10.2 – Расчетная схема фермы

- 2 Определение реакции в опорах фермы. При этом ферму рассматривают как балку, расположенную на двух опорах: шарнирно-неподвижной и шарнирно-подвижной.
- 3 Определение усилий в стержнях фермы с предположением, что узлы представляют собой шарниры. Для этого используют несколько методов: аналитические (метод вырезания узлов, метод сечений) и графический (диаграмма Максвелла Кремоны). Графический метод более удобен для ферм с наклонными поясами.

Метод вырезания узлов удобно использовать, когда надо найти усилия во всех стержнях фермы. Он сводится к последовательному рассмотрению условий равновесия сил, сходящихся в каждом из узлов, определению усилий в стержнях фермы. При решении задач способом вырезания узлов необходимо соблюдать следующие правила: первым выделяют тот узел, в котором находится минимальное число стержней с неизвестными усилиями (см. рисунок 10.2, узел 1); внутренние силы в стержнях заменяют внешними и направляют их от узла, предполагая, что все стержни растянуты; определяют усилия в стержнях из условий равновесия. Если при расчете значение усилия получается со знаком «минус», то стержень на самом деле сжат; если в узле сходятся два стержня и нагрузки в нем нет, то оба стрежня не работают; если в узле сходятся два стержня и нагрузка направлена вдоль одного из них, то второй стержень не работает; переходя от узла к узлу, рассматривают аналогично равновесие каждого узла.

Например, для фермы на рисунке 10.2 для определения усилий в стержнях 1-2, 1-3 вырезают узел 1, отбрасывают всю ферму со всеми действующими усилиями, кроме узла 1. Внутренние силы в стержнях 1-2 и 1-3 заменяют внешними и направляют их от узла (рисунок 10.3).

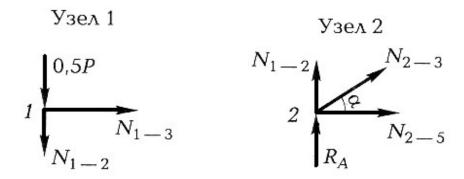


Рисунок 10.3 – Метод вырезания узлов

Записывают условия равновесия. Сумма проекций на ось у:

$$\sum P_{v} = -0.5P - N_{1-2} = 0,$$

откуда

$$N_{1-2} = -0.5P.$$

Знак «минус» показывает, что стержень 1–2 работает на сжатие.

Стержень 1–3 не работает, т. к. $\sum P_x = N_{1-3} = 0$.

Для определения усилий в стержнях 2-3 и 2-5 вырезают узел 2 (см. рисунок 10.3).

С учетом того, что $\sum P_y = R_{_A} + N_{_{1-2}} + N_{_{2-3}} \sin \alpha = 0$, $N_{_{1-2}} = -0.5P$.

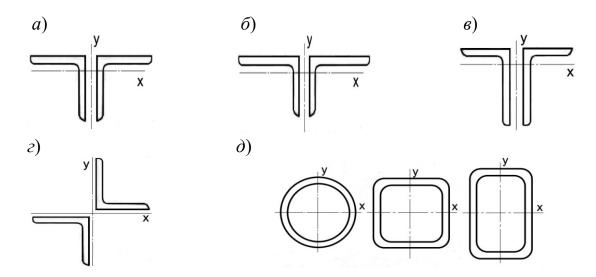
Получают

$$N_{2-3} = \frac{0.5P - R_{A}}{\sin \alpha}$$
.

Так как реакция опоры $R_A > 0.5P$, то стержень 2–3 работает на сжатие. Из условия $\sum P_x = 0$.

$$\sum P_{x} = N_{2-3} \cos \alpha + N_{2-5} = 0.$$

Откуда


$$N_{2-5} = \frac{(R_A - 0.5P)\cos\alpha}{\sin\alpha}.$$

Стержень 2-5 работает на растяжение.

Правильность всех расчетов подтверждает выполнение условий равновесия в последнем узле 14.

4 Подбор сечения элементов фермы. Основные типы сечений сварных ферм приведены на рисунке 10.4. Все стержни ферм должны удовлетворять

условиям прочности, сжатые элементы дополнительно должны удовлетворять условию устойчивости.

a — для сжатых и растянутых стержней решетки (раскосов, стоек), растянутых поясов; δ — для сжатых и растянутых поясов; ϵ — для сжатых опорных раскосов; ϵ — для стоек, к которым привариваются вертикальные связи; δ — трубы различного сечения

Рисунок 10.4 – Виды поперечных сечений элементов легких ферм

Подбор сечения растянутых стержней начинают с определения требуемой площади поперечного сечения стержня F_{mp} , используя формулу

$$F_{mp} = N/[\sigma], \tag{10.2}$$

где N – усилие в стержне, H;

 $[\sigma]$ – допускаемое напряжение, МПа.

При определении усилий в стержнях может возникнуть вариант, когда в некоторых стержнях усилие мало или вовсе отсутствует. В этом случае размеры сечения стержней определяют по предельно допустимой гибкости (таблица 10.1).

Таблица 10.1 – Предельные гибкости сжатых и растянутых элементов ферм и связей

		Растянутый стержень			
Элемент конструкции	Сжатый стержень	Статическая	Динамическая		
		нагрузка	нагрузка		
Пояса, опорные раскосы и стойки,	120	400	250		
передающие опорные реакции					
Прочие элементы ферм	150	400	350		
Связи	200	400	400		

Подбор сечения сжатых стержней начинают с определения требуемой площади поперечного сечения стержня F_{mp} , используя формулу

$$F_{mp} = N/\varphi[\sigma], \tag{10.3}$$

где ф – коэффициент продольного изгиба.

В формуле (10.3) две неизвестные: F_{mp} и ф, следовательно, задачу необходимо решать методом последовательных приближений. В первом приближении задают гибкость λ : для поясов, опорных раскосов и стоек $\lambda = 80...100$, для остальных сжатых стержней решетки $\lambda = 100...120$.

Коэффициент ϕ определяют по таблице 10.2 (например, для значения $\lambda_0 = 80$ коэффициент продольного изгиба $\phi = 0.715$). Затем находят F_{mp0} для первого приближения и вычисляют радиусы инерции сечения по следующим формулам:

$$r_{x0} = l_x/\lambda_0 \; ; \tag{10.4}$$

$$r_{v0} = l_v/\lambda_0, \tag{10.5}$$

где l_x , l_y — расчетные длины стержня в главных плоскостях.

Чтобы подобрать сечение сжатых элементов ферм, необходимо определить расчетные длины стержней в плоскости фермы l_x и расчетные длины сжатых стержней из плоскости фермы l_y . Для верхнего пояса l_x будет равно расстоянию между центрами узлов $l_x = l$, для опорного раскоса $l_x = 0.5l_1$, для остальных сжатых раскосов и стоек $l_x = 0.8l_1$ (рисунок 10.5). Связи по верхним поясам фермы уменьшают расстояние между узлами, закрепленными от горизонтального смещения, поэтому $l_y = 2d$, т. е. расстоянию между закрепленными от горизонтального смещения точками.

По значению площади и радиусов инерции r_{x0} и r_{y0} выбирают наиболее подходящее сечение из сортамента. По наибольшей гибкости из λ_x и λ_y , которая не должна превышать значений таблицы 10.2, находят минимальный коэффициент продольного изгиба ϕ_{min} . Если он существенно отличается от первоначального, то производят перерасчет и корректировку сечения.

Таблица 10.2 – Коэффициенты ф

Гибкость		Марка стали	
элемента λ	Сталь 3	09Г2С	10ХСНД
0	1	1	1
10	0,988	0,986	0,985
20	0,97	0,965	0,962
30	0,943	0,932	0,927
40	0,905	0,888	0,878
50	0,867	0,837	0,823
60	0,82	0,78	0,764
70	0,77	0,71	0,682
80	0,715	0,637	0,604
90	0,655	0,563	0,523
100	0,582	0,482	0,437
110	0,512	0,413	0,37

Окончание таблицы 10.2

Гибкость	Марка стали					
элемента λ	Сталь 3	09Г2С	10ХСНД			
120	0,448	0,35	0,315			
130	0,397	0,302	0,264			
140	0,348	0,256	0,228			
150	0,305	0,226	0,198			
160	0,27	0,2	0,176			
170	0,24	0,178	0,156			
180	0,216	0,16	0,139			
190	0,196	0,142	0,126			
200	0,175	0,129	0,112			
210	0,16	0,118	0,102			
220	0,146	0,108	0,093			

Толщину фасонки определяют конструктивно, исходя из усилия в опорном раскосе, по таблице 10.3. Толщина фасонок обычно принимается одинаковой во всех узлах.

Таблица 10.3 – Рекомендуемая толщина фасонок

Усилие	<150	160250	260400	410600	6101000	10101400	14101800	>1800
в опорном								
раскосе, кН								
Толщина	6	8	10	12	14	16	18	20
фасонок, мм								

Результаты подбора сечений представляют по форме, указанной в таблице 10.4.

Таблица 10.4 – Пример подбора сечений стержней

Эле-	Обоз-	Расчет-	Приня-	Пло-		етные	Раді инерці		Толщи-		ю- сть		Напря-
мент	ние стерж- ня	уси- лие, кН	тое сече- ние	щадь, см ²	l_{x}	$l_{ m y}$	$r_{\rm x}$	$r_{ m y}$	на фасон- ки, мм	λ_{x}	$\lambda_{ m y}$	φmin	жение, МПа
Вер- хний	6–7	+734	7 Г 125×8	39,4	252	252	3,87	5,6	14	65	45	_	+186
пояс													
Ниж- ний	2–5	+660	J L 110×8	36	600	1200	2,58	6,86	14	233	175	ı	+184
пояс	•••												
Рас- косы	2–3	-362	7 Г 125×8	39,4	354	443	3,87	5,6	14	88	148	0,314	-21
	•••												

Стержни решетки из уголков прикрепляются к узловым фасонкам угловыми швами по обушку и по перу (рисунок 10.6). Величина усилий по перу N_n и по обушку $N_{o\delta}$ определяется по формулам

$$N_{n} = \gamma N; \tag{10.6}$$

$$N_{o\delta} = (1 - \gamma)N, \tag{10.7}$$

где N – расчетное усилие, H;

 γ — коэффициент, характеризующий несимметричность сечения, $\gamma = z_0/b$ (с м. рисунок 10.6).

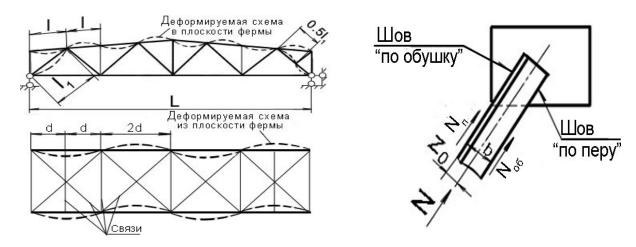


Рисунок 10.5 – Схема определения расчетных длин элементов фермы

Рисунок 10.6 – Расчетная схема сварного узла

Для равнополочных уголков принимают $\gamma=0,3$, для неравнополочных прикрепленных узкой полкой $\gamma=0,25$, для неравнополочных прикрепленных широкой полкой $\gamma=0,35$.

Требуемую длину сварных швов определяют, исходя из условия прочности угловых швов на условный срез:

$$l_{\text{шва по обушку}} = N_{oб}/(\beta K_{o\delta} R_{wf});$$
 (10.8)

$$l_{usa\ no\ nepy} = N_n/(\beta K_n R_{wf}), \qquad (10.9)$$

где $K_{o\delta}$, K_n – катеты сварных швов по обушку и по перу, м;

 R_{wf} – расчетное сопротивление углового шва, для стали Ст 3 R_{wf} = 180 МПа;

 β — коэффициент формы шва. Для ручной дуговой сварки β = 0,7; для ме-ханизированной сварки β = 0,8; для автоматической сварки β = 0,9.

Катеты угловых швов не должны превышать минимальной толщины металла полок уголка и фасонок. Результаты расчета сварных швов сводятся в таблицу 10.5.

Таблица 10.5 – Результаты расчета сварных швов

Номер	Cavayyya	Madi	П	Цов по обуг	шку	Ш	Іов по пер	рy
стержня	Сечение	<i>N</i> , кН	<i>Nоб</i> , кН	<i>Коб</i> , мм	$L_{ m IIIBa}$, мм	N_n , к H	K_n , MM	L $uва$, мм
1–2	7 Г 160×100×9	780	585	8	220	195	6	110

Контрольные вопросы

- 1 Какие расчетные методы можно использовать для определения усилий в стержнях ферм?
- 2 От каких факторов зависят размеры сварных швов для соединения элементов ферм в узел?
 - 3 Что такое коэффициент продольного изгиба и как он определяется?

11 Практическое занятие № 11. Расчет конструкций оболочкового типа

К оболочковым конструкциям относят вертикальные цилиндрические резервуары с плоскими и сферическими днищами, сферические резервуары, газгольдеры, ресиверы, трубопроводы и т. д. Расчетными нагрузками для оболочковых конструкций, как правило, являются гидростатическое или избыточное давление, а также изгибающие момент и усилия, вызываемые перепадами температур. Толщина стенки оболочковых конструкций мала по сравнению с их габаритными размерами. В связи с этим предполагается, что напряжения в стенке оболочки распределены равномерно по ее толщине. Компоненты напряжений рассчитывают по формулам из таблицы 11.1.

Таблица 11.1 – Напряжения в цилиндрических и сферических оболочках

I		Напряжение	
Конструкция	меридиональное σ_1	кольцевое σ2	касательное
Стенка цилиндрического резервуара, находящегося под внутренним давлением жидкости и газа	$\frac{p \cdot r}{2\delta}$	$\frac{(\gamma \cdot y + p) \cdot r}{\delta}$	_
Стенка цилиндрического сосуда, находящегося под внутренним (+) или наружным (–) давлением газа <i>р</i>	$\pm \frac{p \cdot r}{2\delta}$	$\pm \frac{p \cdot r}{\delta}$	_
Стенка сферического сосуда, находящегося под внутренним $(+)$ или наружным $(-)$ давлением газа p	$\pm \frac{p \cdot r}{2\delta}$	$\pm \frac{p \cdot r}{2\delta}$	_

Примечание — δ — толщина стенки сосуда, м; r — радиус срединной поверхности, м; y — расстояние от поверхности жидкости до рассматриваемого сечения, м; γ — плотность жидкости, кг/м³

Задание 1

Определите толщину стенки стального сферического резервуара объемом V. Исходные данные приведены в таблице 11.2.

Таблица 11.2 – Исходные данные к заданию 1

Номер варианта	Объем резервуара <i>V</i> , м ³	Плотность жидкости γ , г/см ³	Избыточное давление, МПа	Предел прочности стали σ ₆ , МПа
1	600	0,8	0,2	500
2	800	0,8	0,2	320
3	1000	0,8	0,2	380
4	1200	0,8	0,2	400
5	2000	0,8	0,2	420

Объем сферического резервуара вычисляем по формуле

$$V = \frac{4}{3}\pi \cdot r^3,\tag{11.1}$$

где r — радиус внутренней поверхности резервуара, м.

Тогда диаметр резервуара

$$D = 2r = 2 \cdot \sqrt[3]{\frac{3 \cdot V}{4\pi}} = 2 \cdot \sqrt[3]{\frac{3 \cdot 600}{4 \cdot 3.14}} = 10,5 \text{ m}.$$

Определяем расчетное давление p как сумму гидростатического и избыточного давлений с соответствующими коэффициентами запаса:

$$p = 1, 1 \cdot p_{\textit{cudpocmam}} + 1, 2 \cdot p_{\textit{uso}} = 1, 1 \cdot \gamma \cdot h \cdot g + 1, 2 \cdot p_{\textit{uso}} =$$

$$=1,1.800.10,5.9,8.10^{-6}+1,2.0,2=0,091+0,24=0,331$$
 M Π a.

Находим расчетную толщину оболочки по формуле

$$Sp = \frac{pD}{4\varphi[\sigma] - p} = \frac{0,331 \cdot 10,5}{4 \cdot 142,86 - 0,33} = 0,006 \text{ M},$$
 (11.2)

где ϕ — коэффициент снижения допускаемых напряжений на сварные соединения по сравнению с допускаемым напряжением на основной металл, ϕ = 1.

$$[\sigma] = \frac{\sigma_B}{n} = \frac{500}{3.5} = 142,86 \text{ M}\Pi a,$$
 (11.3)

где n – коэффициент запаса прочности, для сферических резервуаров n = 3,5.

Окончательная толщина стенки задается с учетом прибавки на вытяжку металла при вальцовке или штамповке C_1 и прибавки на коррозию C_2 :

$$S_{CT} = Sp + C_1 + C_2 = 6 + 0.5 + 0.5 = 7 \text{ MM}.$$
 (11.4)

Задание 2

Рассчитать геометрические параметры вертикального цилиндрического резервуара из стали 09Г2С для хранения нефти (рисунок 11.1). Исходные данные представлены в таблице 11.3. Параметрический ряд высот резервуаров представлен в таблице 11.4.

Таблица 11.3 – Исходные данные к заданию 2

Вариант	Объем резервуара V , м ³	Плотность нефти γ , г/см ³
1	20000	
2	21000	
3	22000	
4	24000	
5	25000	0.0
6	26000	0,9
7	27000	
8	28000	
9	29000	
10	30000	

Таблица 11.4 – Объемы резервуаров рекомендуемого параметрического ряда в кубических метрах

								B	нутре	тний д	Внутренний диаметр стенки, м	стенки	1, M						
Высота стенки, м	4,73	6,63	4,73 6,63 7,58	8,53	10,43	12,33	15,18	15,18 18,98	20,92	22,80	28,50	34,20	39,90	45,60	50,70	55,80	60,70	66,00	71,10
6,0	105	207	271	343	513	716	1086	1698	2062	2450									
7,5	132	259	338	429	641	968	1357	2122	2578	3062									
0,6	158	311	406	514	692	1075	1629	2546	3094	3675									
10,5	185	362	474	009	268	1254	1900	2971	3609	4287									
12,0	211	414	542	989	1025	1433	2172	3395	4125	4899	7655	11024	15004	19598	24226	29345	34726	11024 15004 19598 24226 29345 34726 41054 47644	47644
13,5	237	466	609	771	1153	1612	2443	3820	4640	5512	8612	12402	16880	22047	27255	33014	39068	16880 22047 27255 33014 39066 46186 53600	53600
14,0				_							8931	12861	17505	17505 22864 28264 34236 40513	28264	34236	40513	47897	
15,0	264	518	<i>L L L L L L L L L L</i>	857	1282	1791	2715	4244	5156	6124	6956	13779	18755	13779 18755 24497 30283	30283	36682	43407	51318	
16,0											10207	14698	20006	10207 14698 20006 26130 32302 39127 46301	32302	39127	46301		
16,5	290	570	745	943	1410	1970	2986	4668	5671	1819		10526 15157	20631	20631 26947 33311 40350 47748	33311	40350	47748		
18,0	316	621	812	1029	1538	2149	3258	5093	6187	7349	11483	11483 16535	22507	22507 29396 36339	36339	44018	52088		
19,5	343	673	880	1114	1666	2328	3529	5517	6703	7961	12440	12440 17913	24382	31846 39368		47686			
20,0	351		903	1143	690 903 1143 1709	2388	3620	6595	875		12759	18373	25007	8166 12759 18373 25007 32663 40377 48909	40377	48909			
21,0	369	725	948	1200	1794	2507	3801	5942	7218	8574		13397 19291 26258	26258	34296	34296 42396 51354	51354			
22,0	387	760	993	1257	1880	2627	3982	6225	7562	8982	14035	20210	27508	35929 44415	44415				
23,0											14673	21129	28758	37562	46434				
24,0											15311	22047	30009	15311 22047 30009 39195 48453	48453				
25,0											15948	22966	31259	15948 22966 31259 40828 50471	50471				

высоту резервуара по таблице 11.4. Для Выбираем резервуара объемом $V=20000~{\rm M}^3$ принимаем номинальную высоту резервуара $H_{_{\rm H}}=16~{\rm M}\,.$ изготовления стенки выбираем стальной лист с размерами в поставке 2000 × 8000 мм. С учетом обработки кромок листа с целью прямоугольной формы получения правильной при дальнейших расчетах принимаются следующие его размеры: 1990 7990 Соответственно, количество поясов в резервуаре будет равно $N_{\pi} = 8$. Точная высота резервуара $H = 1990 \cdot 8 = 15920$ мм.

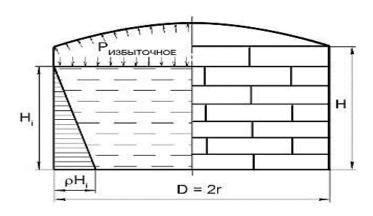


Рисунок 11.1 – Расчетная схема

Радиус резервуара определяется из формулы для объема цилиндра

$$V = \pi \cdot r^2 \cdot H, \tag{11.5}$$

откуда

$$r = \sqrt{\frac{V}{\pi H}} = \sqrt{\frac{20000 \cdot 10^3}{\pi \cdot 15920}} = 20002$$
 mm.

Периметр резервуара L_n и число листов в поясе N_n вычисляются по формулам

$$L_n = 2 \cdot \pi \cdot r = 2 \cdot \pi \cdot 20002 = 125613 \text{ MM};$$
 (11.6)

$$N_{_{\pi}} = \frac{L_{_{\pi}}}{L} = \frac{125613}{7990} = 15,7. \tag{11.7}$$

Предпочтительней округлять число листов в поясе до целого или выбирать последний лист равным половине длины листа.

Принимаем число листов в поясе $N_{_{\it Л}}$ = 16. Тогда периметр резервуара

$$L_n = 16 \cdot 7990 = 127840$$
 mm,

а окончательный радиус

$$r = \frac{L_n}{2 \cdot \pi} = \frac{127840}{2 \cdot \pi} = 20346$$
 MM.

Уточненный объем резервуара

$$V = \pi \cdot r^2 \cdot H = \pi \cdot 20.346^2 \cdot 15920 \approx 20704 \text{ m}^3.$$

Номинальная толщина каждого пояса стенки резервуара t_U рассчитывается по формуле

$$t_U = (\gamma \cdot g \cdot (H_i - \theta_L) + 1, 2 \cdot p) \frac{r}{R} + \Delta t_{cU} + \Delta t_{mU}, \qquad (11.8)$$

где
$$\theta_{\scriptscriptstyle L} = \sqrt{r \cdot (t_{\scriptscriptstyle L} - \Delta t_{\scriptscriptstyle cU} - \Delta t_{\scriptscriptstyle mU})};$$

 t_L — назначенная номинальная толщина пояса стенки, примыкающего снизу к i-му стыку, м;

 Δt_{cU} – припуск на коррозию пояса, примыкающего к *i*-му стыку снизу, м;

 $\Delta t_{\it mU}$ — минусовой допуск на прокат пояса, примыкающего к *i*-му стыку снизу, м;

R – расчетное сопротивление материала пояса по пределу текучести, Па;

p – нормативное избыточное давление, МПа;

g – ускорение свободного падения, $g = 9.8 \text{ м/c}^2$;

 H_i – расстояние от зеркала продукта до i-го стыка поясов, м.

Расчетное сопротивление материала стенки резервуаров по пределу текучести определяется по формуле

$$R = \frac{R_{yn} \cdot \gamma_c \cdot \gamma_t}{\gamma_m \cdot \gamma_n},\tag{11.9}$$

где R_{yn} — нормативное сопротивление растяжению металла стенки, равное минимальному значению предела текучести, принимаемому по государственным стандартам на листовой прокат, для стали 09Г2С $R_{yn}=325~{\rm M\Pi a};$

 γ_c — коэффициент условий работы, γ_c = 0,7 — для нижнего пояса, γ_c = 0,8 — для остальных поясов;

 γ_t – температурный коэффициент, $\gamma_t = 1$;

 γ_{m} – коэффициент надежности по материалу, γ_{m} = 1,025;

 γ_n — коэффициент надежности по ответственности, для класса опасности І γ_n =1,2; для класса ІІ γ_n =1,1; для класса ІІІ γ_n =1,05; для класса ІV γ_n =1.

Номинальная толщина первого пояса стенки резервуара

$$t_{\scriptscriptstyle U_1} = (900 \cdot 9, 8 \cdot (15, 92 - 0) + 0) \frac{20,346}{201,77 \cdot 10^6} + 0,001 + 0,001 = 0,0166 \text{ м при } \theta_{\scriptscriptstyle L1} = 0 \,;$$

$$R_{1nogc} = \frac{325 \cdot 0.7 \cdot 1}{1.025 \cdot 1.1} = 201.77 \text{ M}\Pi \text{a.}$$

Номинальная толщина второго пояса стенки резервуара

$$t_{_{U\,2}} = (900 \cdot 9, 8 \cdot (13, 93 - 0, 545) + 0) \frac{20,346}{230,6 \cdot 10^6} + 0,001 + 0,001 = 0,0124 \text{ м.}$$

$$\theta_{_{L2}} = \sqrt{20,357 \cdot (0,0166 - 0,001 - 0,001)} = 0,545 \text{ м.}$$

$$R_{_{2nogc}} = \frac{325 \cdot 0,8 \cdot 1}{1,025 \cdot 1,1} = 230,6 \text{ M}\Pi\text{a.}$$

Результаты расчета толщины t_U каждого пояса стенки следует округлить до целого числа и привести к стандартным значениям на толщину проката по ГОСТ 19903. Последним этапом расчета является сравнение полученной толщины поясов с минимально допустимым значением t_{\min} по таблице 11.5.

Таблица 11.5 – Минимально допустимая толщина листов стенки резервуара *t*_{min}

Диаметр резервуара <i>D</i> , м	До 15 включ.	Св. 15 до 25	Св. 25 до 40	Св. 40 до 65
Толщина t_{\min} , мм	5	6	8	10

Контрольные вопросы

- 1 Как определяется расчетная толщина стенки цилиндрического резервуара?
- 2 Какие компоненты напряжений могут возникнуть в стенке цилиндрического резервуара?
- 3 Какие припуски на толщину листов резервуара закладываются в проектной документации?

Список литературы

- 1 **Николаев, Г. А.** Сварные конструкции. Расчет и проектирование / Г. А. Николаев, В. А. Винокуров. М. : Машиностроение, 1990. 448 с.
- 2 Еврокод 3. Проектирование стальных конструкций. Расчет соединений. Часть 1–8: ТКП EN 1993–1–8–2009. Введ. 10.12.2009. Минск: Минстройархитектуры, 2010.-133 с.
- 3 Еврокод 3. Проектирование стальных конструкций. Часть 1-1. Общие правила и правила для зданий: ТКП EN1993-1-1-2009. Введ. 10.12.2009. Минск: Минстройархитектуры, 2010. 95 с.
- 4 Контактная сварка. Соединения сварные. Конструктивные элементы и размеры: ГОСТ 15878–79. Введ. 28.05.79. М. : Гос. ком. СССР по стандартам, 1979.-10 с.
- 5 **Куликов, В. П.** Технология сварки плавлением и термической резки : учебник / В. П. Куликов. 3-е изд., стер. Минск: Новое знание, 2019. 463 с.
- 6 **Катаев, Р. Ф.** Технология конструкционных материалов: теория и технология контактной сварки : учебник / Р. Ф. Катаев, В. С. Милютин, М. Г. Близник ; под науч. ред. М. П. Шалимова. М.: Юрайт, 2025. 146 с.