МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Технологии металлов»

МЕХАНИКА МАТЕРИАЛОВ

Методические рекомендации к практическим занятиям для студентов специальностей 6-05-0713-04 «Автоматизация технологических процессов и производств», 6-05-0714-02 «Технология машиностроения, металлорежущие станки и инструменты» и 6-05-0714-03 «Инженерно-техническое проектирование и производство материалов и изделий из них» очной и заочной форм обучения

Часть 2

Могилев 2025

УДК 539.3/.6 ББК 30.121 М64

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Технологии металлов» «9» сентября 2025 г., протокол № 2

Составители: канд. техн. наук, доц. И. М. Кузменко; ст. преподаватель С. В. Гонорова

Рецензент канд. техн. наук, доц. А. С. Федосенко

Методические рекомендации составлены в соответствии с рабочей программой дисциплины «Механика материалов» для студентов специальностей 6-05-0713-04 «Автоматизация технологических процессов и производств», 6-05-0714-02 «Технология машиностроения, металлорежущие станки и инструменты» и 6-05-0714-03 «Инженерно-техническое проектирование и производство материалов и изделий из них» очной и заочной форм обучения. Содержат материалы к практическим занятиям.

Учебное издание

МЕХАНИКА МАТЕРИАЛОВ

Часть 2

Ответственный за выпуск Д. И. Якубович

Корректор И. В. Голубцова

Компьютерная верстка Н. П. Полевничая

Подписано в печать . Формат 60×84/16. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 36 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 07.03.2019. Пр-т Мира, 43, 212022, г. Могилев.

© Белорусско-Российский университет, 2025

Содержание

Введение	4
1 Расчет балки с простым поперечным сечением при косом	
изгибе	5
2 Расчет вала круглого поперечного сечения на прочность при	
совместном действии изгиба и кручения	7
3 Расчет бруса при внецентренном растяжении-сжатии	10
4 Построение ядра сечения при внецентренном приложении	
продольной силы	13
5 Определение угловых и линейных перемещений в балках (интеграл	
Mopa)	17
6 Определение угловых и линейных перемещений в балках (способ	
Верещагина)	20
7 Решение статически неопределимых балок методом сил	24
8 Определение критической нагрузки при потере устойчивости	
центрально сжатого стержня	27
9 Расчет составного сечения продольно сжатого стержня на	
устойчивость	30
10 Продольный и поперечный удары по брусу. Определение дефор-	
маций и напряжений в стержне. Расчет на прочность и жесткость стерж-	
невых конструкций при нагружении ударом	33
11 Решение плоской задачи теории упругости с использованием	
функции напряжений	35
12 Принципы трехмерного проектирования изделий в САПР	
SolidWorks	36
13 Расчет ступенчатого бруса в САПР SolidWorks	37
Список литературы	37
Пентомочно А	
Приложение А	38

Введение

Цель преподавания курса «Механика материалов» — получение теоретических знаний в объеме лекций по основам расчета на прочность, жесткость и устойчивость деталей и элементов конструкций.

Практические занятия позволяют закрепить теоретические знания и приобрести навыки расчета при различных видах нагружения.

Методические рекомендации содержат примеры и алгоритмы решения задач по основным темам курса. Представлены задачи для самостоятельного решения с целью подготовки к занятиям, контрольным работам и экзамену. Также приведены контрольные вопросы по теории курса.

1 Расчет балки с простым поперечным сечением при косом изгибе

Пример 1 — Проверить прочность стальной балки двутаврового поперечного сечения, изображенной на рисунке 1.1, a, если $[\sigma]$ = 170 МПа.

Исходные данные: двутавр № 27 ($W_X = 371 \text{ см}^3$, $W_X = 41,5 \text{ см}^3$).

Решение

На основании принципа независимости действия сил рассмотрим отдельно каждую плоскость нагружения [1, 2].

Составим схему нагружения балки в вертикальной плоскости (рисунок 1.1, δ). Построим эпюру изгибающих моментов от сил в вертикальной плоскости (рисунок 1.1, ϵ).

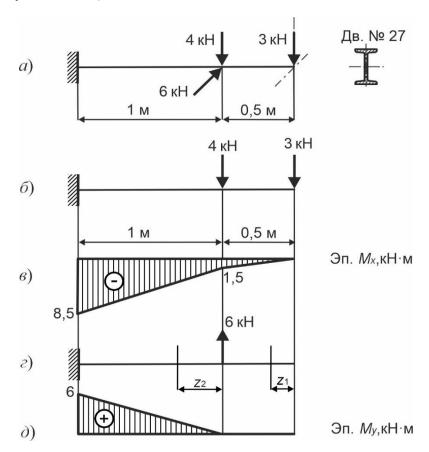


Рисунок 1.1

Составим схему нагружения балки в вертикальной плоскости (рисунок 1.1, ε). Построим эпюру изгибающих моментов от сил в вертикальной плоскости (рисунок 1.1, ∂).

Условие прочности для опасного сечения

$$\sigma_{\text{max}} = \frac{8.5 \cdot 10^3}{371 \cdot 10^{-6}} + \frac{6 \cdot 10^3}{41.5 \cdot 10^{-6}} = 167.5 \text{ M}\Pi\text{a} \le \left[\sigma\right] = 170 \text{ M}\Pi\text{a}.$$

Прочность балки обеспечена.

Пример 2 (для самостоятельного решения) — Определить размеры поперечного сечения балки, изображенной на рисунке 1.2.

Исходные данные: $[\sigma] = 160 \text{ M}\Pi\text{A}$.

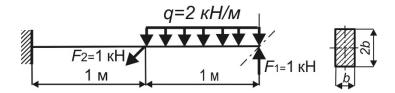


Рисунок 1.2

Пример 3 (для самостоятельного решения) – Определить допускаемую нагрузку на балку, изображенную на рисунке 1.3.

Исходные данные: $[\sigma] = 160 \text{ M}\Pi\text{A}$.

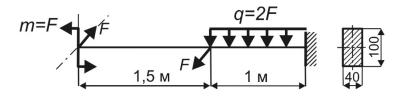


Рисунок 1.3

Контрольные вопросы

- 1 Какой случай изгиба называется косым изгибом?
- 2 В чем состоит принцип независимости действия сил при расчете балки на косой изгиб?
- 3 Запишите формулу для определения нормальных напряжений при косом изгибе.
 - 4 Сформулируйте условие прочности при косом изгибе.
- 5 Запишите выражение для определения положения нейтральной оси при косом изгибе.
 - 6 Нейтральная ось при косом изгибе проходит через центр тяжести сечения?
- 7 Как определить опасные точки опасного сечения, если известно положение нейтральной оси?
- 8 Возможен ли косой изгиб балки, если осевые моменты ее поперечного сечения равны?
 - 9 Как определить прогиб балки при косом изгибе?

2 Расчет вала круглого поперечного сечения на прочность при совместном действии изгиба и кручения.

Пример 1 — Вал круглого сплошного поперечного сечения (рисунок 2.1, a) передает мощность 6 кВт, вращаясь с угловой скоростью 100 рад/с. На валу установлены шкив диаметром $D_1 = 0,15$ м и шестерня, средний диаметр которой $D_2 = 0,1$ м. Определить диаметр вала по четвертой теории прочности, если $[\sigma] = 80$ МПа.

Решение

Приведем действующие нагрузки к центру тяжести вала (рисунок 2.1, δ). Определим внешние моменты на шкиве и шестерне [1–4]:

$$m_1 = m_2 = \frac{N}{\omega} = \frac{6}{100} = 0,06 \text{ kH} \cdot \text{M}.$$

Составим схему действия на вал внешних моментов (рисунок 2.1, β), в соответствии с которой построим эпюру крутящих моментов (рисунок 2.1, ϵ).

Определим внешние силы, изгибающие вал со стороны шкива и шестерни:

$$F_1 = 3 \cdot t_1 = 3 \cdot \frac{2 \cdot m_1}{D_1} = 3 \cdot \frac{2 \cdot 0,06}{0,15} = 2,4 \text{ kH};$$

$$F_2 = 3 \cdot \frac{2 \cdot m_2}{D_2} = \frac{2 \cdot 0,06}{0,1} = 1,2 \text{ KH}.$$

Составим схему действия на вал сил в вертикальной плоскости (рисунок 2.1, ∂). Определим реакции опор и построим эпюру изгибающих моментов от сил в вертикальной плоскости (рисунок 2.1, e).

Составим схему действия на вал сил в горизонтальной плоскости (см. рисунок 2.1, ∂). Определим реакции опор и построим эпюру изгибающих моментов от сил в горизонтальной плоскости (рисунок 2.1, e).

Построим эпюры суммарных изгибающих моментов (рисунок 2.1, \mathscr{H}) в характерных сечениях вала, если $M = \sqrt{M_X^2 + M_Y^2}$.

$$M=0;\,M=0,48\,$$
 к ${
m H\cdot m};$
$$M=\sqrt{0,09^2+0,12^2}=0,15\,{
m kH\cdot m}.\quad M=0.$$

По эпюре суммарных изгибающих моментов M и эпюре крутящих моментов M_{κ} определим опасное сечение. В этом сечении действуют

наибольший изгибающий момент M=0,48 кH·м и наибольший крутящий момент $M_{\scriptscriptstyle K}=0,06$ кH·м.

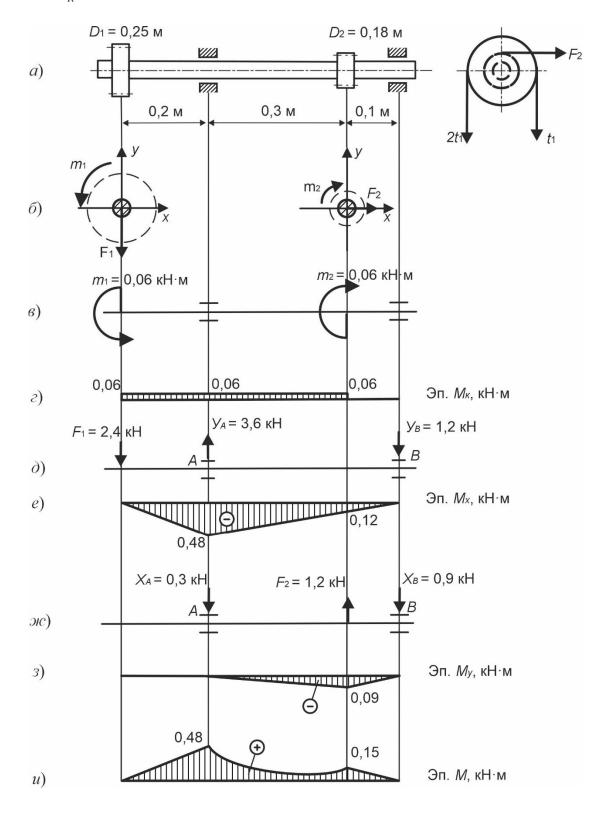


Рисунок 2.1

Эквивалентный (расчетный) момент по четвертой теории прочности в опасном сечении

$$M_{_{_{\mathcal{H}K}}}^{^{\mathrm{IV}}} = \sqrt{M^2 + 0.75 \cdot M_{_K}^2} = \sqrt{0.48^2 + 0.75 \cdot 0.06^2} = 0.483 \ \mathrm{kH\cdot m}.$$

Расчетное значение диаметра вала из условия прочности

$$d = \sqrt[3]{\frac{32 \cdot M^{\text{IV}}}{\pi \cdot [\sigma]}} = \sqrt{\frac{32 \cdot 0,483 \cdot 10^3}{3,14 \cdot 80 \cdot 10^6}} = 0,0395 \text{ M} = 39,5 \text{ MM}.$$

Пример 2 (для самостоятельного решения) — Проверить прочность вала, изображенного на рисунке 2.2, по четвертой теории прочности.

Исходные данные: $N=40~{\rm kBt},~~\omega=100~{\rm of/мин},$ диаметр вала $d=55~{\rm mm},$ [σ] = 70 МПА.

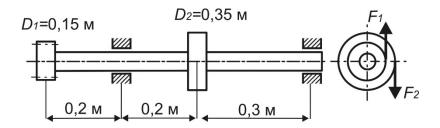


Рисунок 2.2

Пример 3 (для самостоямельного решения) – Определить диаметр вала, изображенного на рисунке 2.3, по третьей теории прочности.

Исходные данные: N = 20 кВт, n = 200 об/мин, $[\sigma] = 80$ МПА.

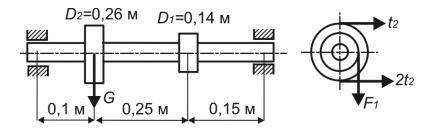


Рисунок 2.3

Контрольные вопросы

- 1 Какие внутренние силовые факторы возникают при совместном действии изгиба и кручения?
 - 2 Как определяется внешний момент, если известна передаваемая мощность?
 - 3 Как определить усилие, изгибающее вал со стороны колеса (шестерни)?
 - 4 Как определить усилие, изгибающее вал со стороны шкива?
- 5 Запишите формулу для определения полного (суммарного) изгибающего момента.
 - 6 При помощи каких эпюр определяют опасное сечение вала?
- 7 Какие напряжения возникают в поперечном сечении вала при совместном действии изгиба и кручения?

- 8 Какие точки поперечного сечения вала являются опасными при совместном действии изгиба и кручения?
- 9 Запишите выражения для определения эквивалентных (расчетных) напряжений по третьей и четвертой теориям прочности.
- 10 Запишите выражения для определения эквивалентного (расчетного) момента по третьей и четвертой теориям прочности.
- 11 Запишите условие прочности при совместном действии изгиба и кручения.

3 Расчет бруса при внецентренном растяжении-сжатии

Пример 1 — Проверить прочность бруса, сжатого сосредоточенной силой F = 120 кH, приложенной в точке F (рисунок 3.1). Брус изготовлен из материала, для которого $[\sigma]_{CK} = 100$ МПа, $[\sigma]_P = 20$ МПа.

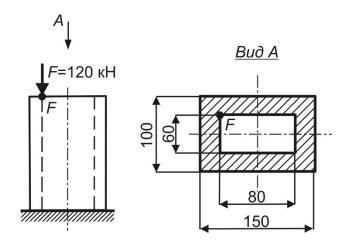


Рисунок 3.1

Решение

Составим расчетную схему поперечного сечения (рисунок 3.2). На схеме размеры укажем в сантиметрах. Сечение имеет оси симметрии. Оси симметрии являются главными центральными осями (x и y соответственно). На пересечении их находится центр тяжести — точка C (см. рисунок 3.2). Определим геометрические характеристики заданного поперечного сечения.

Площадь

$$A = 15 \cdot 10 - 8 \cdot 6 = 102 \text{ cm}^2$$
.

Главные центральные моменты инерции [2]

$$I_X = \frac{15 \cdot 10^3}{12} - \frac{8 \cdot 6^3}{12} = 1106 \text{ cm}^4;$$

$$I_{y} = \frac{15^{3} \cdot 10}{12} - \frac{8^{3} \cdot 6}{12} = 2556,5 \text{ cm}^{4}.$$

Осевые моменты сопротивления [2]

$$W_X = \frac{15 \cdot 10^3 - 8 \cdot 6^3}{6 \cdot 10} = 221,2 \text{ cm}^3;$$

$$W_X = \frac{15^3 \cdot 10 - 8^3 \cdot 6}{6 \cdot 10} = 340,9 \text{ cm}^3.$$

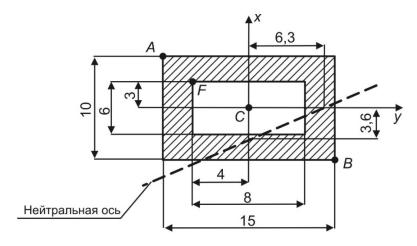


Рисунок 3.2

Квадраты радиусов инерции сечения [2]

$$i_X^2 = \frac{I_X}{A} = \frac{1106}{102} = 10,84 \text{ cm}^2;$$

$$i_y^2 = \frac{I_y}{A} = \frac{2556,5}{102} = 25,06 \text{ cm}^2.$$

Координаты точки приложения силы относительно центра тяжести

$$x_F = -4$$
 cm; $y_F = 3$ cm.

Внутренние силовые факторы

$$N = -120 \text{ кH;}$$

$$M_X = \pm F \cdot y_F = \pm 120 \cdot 0,03 = \pm 3,6 \text{ кH·м;}$$

$$M_Y = \pm F \cdot x_F = \pm 120 \cdot 0,04 = \pm 4,8 \text{ кH·м.}$$

Длины отрезков, которые нейтральная ось (линия) отсекает на главных центральных осях (см. рисунок 3.2),

$$x_0 = a_x = -\frac{i_y^2}{x_F} = -\frac{25,06}{(-4)} = 6,3 \text{ cm};$$

$$y_0 = a_y = -\frac{i_X^2}{y_E} = -\frac{10,84}{3} = -3,6$$
 cm.

Нейтральная ось делит сечение на растянутую и сжатую области.

Опасными являются точки, наиболее удаленные от нейтральной оси: в сжатой области — точка A, в растянутой области — точка B (см. рисунок 3.2).

Напряжения в опасных точках

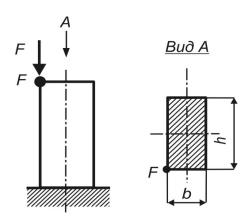
$$\sigma_{A} = -\frac{N}{A} - \frac{M_{X}}{W_{X}} - \frac{M_{Y}}{W_{Y}} = -\frac{120 \cdot 10^{3}}{102 \cdot 10^{-4}} - \frac{3.6 \cdot 10^{3}}{221,2 \cdot 10^{-6}} - \frac{4.8 \cdot 10^{3}}{340,9 \cdot 10^{-6}} = -42,12 \text{ M}\Pia;$$

$$N = \frac{N}{A} - \frac{M_{X}}{W_{X}} - \frac{M_{Y}}{W_{Y}} = -\frac{120 \cdot 10^{3}}{102 \cdot 10^{-4}} - \frac{3.6 \cdot 10^{3}}{221,2 \cdot 10^{-6}} - \frac{4.8 \cdot 10^{3}}{340,9 \cdot 10^{-6}} = -42,12 \text{ M}\Pia;$$

$$\sigma_B = -\frac{N}{A} + \frac{M_X}{W_X} + \frac{M_Y}{W_Y} = -\frac{120 \cdot 10^3}{102 \cdot 10^{-4}} + \frac{3.6 \cdot 10^3}{221, 2 \cdot 10^{-6}} + \frac{4.8 \cdot 10^3}{340, 9 \cdot 10^{-6}} = 18,6 \text{ M}\Pi a.$$

Проверим выполнение условия прочности на растяжение:

$$\sigma_{\text{max}}^P \leq [\sigma]_P$$
; $\sigma_{\text{max}}^P = 18.6 \text{ M}\Pi \text{a} \leq [\sigma]_P = 20 \text{ M}\Pi \text{a}$.


Проверим выполнение условия прочности на сжатие:

$$\begin{split} \sigma_{\max}^{\mathit{CK}} \leq & \left[\sigma\right]_{\mathit{CK}}; \\ \sigma_{\max}^{\mathit{CK}} = & 42,12 \mathrm{M}\Pi a \leq & \left[\sigma\right]_{\mathit{CK}} = 100\,\mathrm{M}\Pi a. \end{split}$$

Прочность бруса обеспечена.

Пример 2 (для самостоятельного решения) — Бетонная колонна нагружена сжимающей силой, приложенной в точке F (рисунок 3.3). Определить допускаемую нагрузку.

Исходные данные: b=60 мм, h=200 мм, r=40 мм, материал — бетон, $\left[\sigma\right]_P=4$ МПА, $\left[\sigma\right]_{C\!K}=25$ МПА.

Пример 3 (для самостоямельного решения) – Колонна, представленная на рисунке 3.4, нагружена сжимается силой, приложенной в точке F = 150 кН. Определить напряжения в угловых точках сечения и построить эпюру нормальных напряжений.

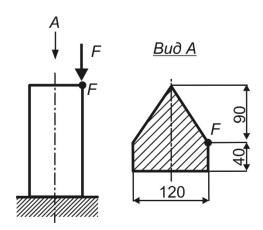


Рисунок 3.4

Контрольные вопросы

- 1 Какие внутренние силовые факторы возникают при внецентренном растяжении (сжатии)?
- 2 Запишите выражение для определения нормальных напряжений при внецентренном растяжении (сжатии).
- 3 Влияют ли на положение нейтральной оси величина и направление внецентренно приложенной нагрузки?
- 4 Как определить положение нейтральной оси при внецентренном растяжении (сжатии)? Запишите соответствующие формулы.
- 5 Как определить опасные точки сечения, если известно положение нейтральной оси?
 - 6 Запишите условие прочности при внецентренном растяжении (сжатии).

4 Построения ядра сечения при внецентренном приложении продольной силы

Пример 1 – Построить ядро сечения.

Исходные данные: поперечное сечение (рисунок 4.1).

Решение

Вычертим расчетную схему заданного поперечного сечения (рисунок 4.2, a). Заданное поперечное сечение состоит из двух простых фигур: I — прямоугольник, 2 — квадрат (см. рисунок 4.2, a).

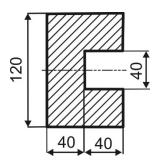


Рисунок 4.1

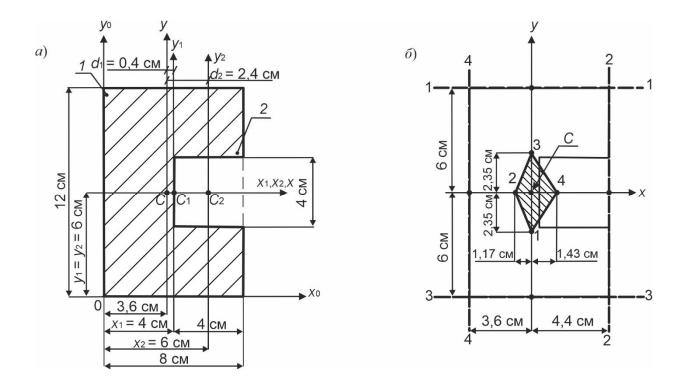


Рисунок 4.2

Определим площади выделенных фигур в соответствии с таблицей А.1:

$$A_1 = 12 \cdot 8 = 96 \text{ cm}^2$$
; $A_2 = 4^2 = 16 \text{ cm}^2$.

Площадь сечения

$$A = A_1 - A_2 = 96 - 16 = 80$$
 cm².

Вычертим заданное сечение. Через центры тяжести выделенных фигур проведем собственные главные центральные оси (см. рисунок 4.2, a).

Определим положение центра сечения относительно произвольно выбранных начальных осей y_0 , x_0 (см. рисунок 4.2, a). Координаты центра тяжести сечения [1–4]

$$x_C = \frac{A_1 \cdot x_1 - A_2 \cdot x_2}{A_1 - A_2} = \frac{96 \cdot 4 - 16 \cdot 6}{80} = 3,6 \text{ cm};$$

$$y_C = \frac{A_1 \cdot y_1 - A_2 \cdot y_2}{A_1 - A_2} = \frac{96 \cdot 6 - 16 \cdot 6}{80} = 6 \text{ cm}.$$

Полученные координаты отложим на начальных осях и отметим центр тяжести — точку C (см. рисунок 4.2, a). Центр тяжести находится на оси симметрии, которая является главной центральной осью x_C . Через центр тяжести проведем вторую главную центральную ось y_C .

Для расчета главных центральных моментов инерции используем формулы при параллельном переносе осей. С учетом данных таблицы А.1,

$$Ix_{C} = \sum_{1}^{n} \left(Ix_{i} + c_{i}^{2} \cdot A_{i} \right) = \left(Ix_{1} + c_{1}^{2} \cdot A_{1} \right) - \left(Ix_{2} + c_{2}^{2} \cdot A_{2} \right) = \frac{8 \cdot 12^{3}}{12} - \frac{4^{4}}{12} = 1130,67 \text{ cm}^{4};$$

$$Iy_{C} = \sum_{1}^{n} \left(Iy_{i} + d_{i}^{2} \cdot A_{i} \right) = \left(Iy_{1} + d_{1}^{2} \cdot A_{1} \right) - \left(Iy_{2} + d_{2}^{2} \cdot A_{2} \right) = \left(\frac{12 \cdot 8^{3}}{12} + 0,4^{2} \cdot 96 \right) - \left(\frac{4^{4}}{12} + 2,4^{2} \cdot 16 \right) = 413,87 \text{ cm}^{4}.$$

Центробежный момент инерции $Ix_C y_C = 0$.

Квадраты радиусов инерции [1-4]

$$i_X^2 = \frac{Ix}{A} = \frac{1130,67}{80} = 14,13 \text{ cm}^2; \quad i_Y^2 = \frac{Iy}{A} = \frac{413,87}{80} = 5,17 \text{ cm}^2.$$

Проводим касательные к контуру сечения (рисунок 4.2, δ).

Касательная 1–1. Относительно центра тяжести определим координаты точек пересечения данной касательной и главных центральных осей сечения (см. рисунок 4.2, δ): $x_0 = \infty$; $y_0 = 6$ см.

Координаты узловой точки 1

$$x_1 = -\frac{i_y^2}{x_0} = -\frac{5,17}{\infty} = 0;$$
 $y_1 = -\frac{i_x^2}{y_0} = -\frac{14,13}{6} = -2,35$ cm.

Касательная 2-2: $x_0 = 4,4$ см; $y_0 = \infty$.

Координаты узловой точки 2

$$x_2 = -\frac{i_y^2}{x_0} = -\frac{5,17}{4,4} = -1,17$$
 cm; $y_2 = -\frac{i_x^2}{y_0} = -\frac{14,13}{\infty} = 0$ cm.

Касательная 3-3: $x_0 = \infty$; $y_0 = -6$ см.

Координаты узловой точки 3

$$x_3 = -\frac{i_y^2}{x_0} = -\frac{5,17}{\infty} = 0$$
; $y_3 = -\frac{i_x^2}{y_0} = -\frac{14,13}{(-6)} = 2,35$ cm.

Касательная 4—4: $x_0 = -3.6$ см; $y_0 = \infty$.

Координаты узловой точки 4:

$$x_2 = -\frac{i_y^2}{x_0} = -\frac{5,17}{(-3,6)} = 1,43 \text{ cm}; \ y_2 = -\frac{i_x^2}{y_0} = -\frac{14,13}{\infty} = 0 \text{ cm}.$$

Отложим рассчитанные координаты узловых точек относительно центра тяжести, отметим точки и соединим их прямыми линиями. Полученная геометрическая фигура является ядром сечения (см. рисунок 4.2, δ).

Пример 2 (для самостоятельного решения) — Построить ядро сечения. Исходные данные: поперечные сечения (рисунок 4.3).

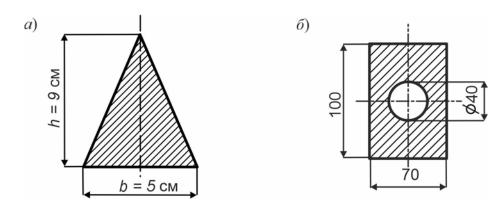


Рисунок 4.3

Контрольные вопросы

- 1 Что такое ядро сечения?
- 2 Запишите формулы для определения координат узловых точек ядра сечения.
- 3 Как пройдет нейтральная ось, если точка приложения силы будет находиться на границе ядра сечения?

5 Определение угловых и линейных перемещений в балках (интеграл Мора)

Пример 1 — Для консольной балки постоянной жесткости (рисунок 5.1) определить прогиб в сечении C при помощи интеграла Мора.

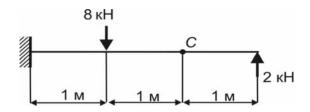


Рисунок 5.1

Решение

Покажем грузовое (действительное) состояние балки, вызванное заданными нагрузками (рисунок 5.2, a).

Покажем единичное (фиктивное) состояние балки [1–4], вызванное действием единичной нагрузки (рисунок 5.2, δ). В этом состоянии балка освобождается от заданных нагрузок, но в сечении C нагружена единичной силой $\overline{F}=1$. Разобьем балки на три участка.

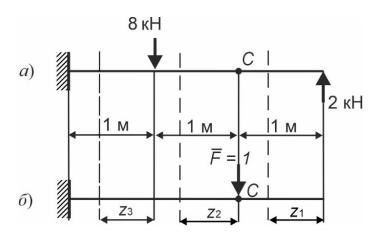


Рисунок 5.2

Составим уравнения для определения изгибающих моментов от заданных нагрузок.

Участок 1: $0 \le z_1 \le 1$ м.

$$M_F = 2 \cdot z_1$$
.

Участок 2: $0 \le z_2 \le 1$ м.

$$M_F = 2 \cdot (1 + z_2) = 2 + 2 \cdot z_2.$$

Участок 3: $0 \le z_3 \le 1$ м.

$$M_F = 2 \cdot (2 + z_3) - 8 \cdot z_3 = 4 - 6 \cdot z_3.$$

Составим уравнения для определения изгибающих моментов от единичной нагрузки.

Участок 1: $0 \le z_1 \le 1$ м.

$$\overline{M}=0.$$

Участок 2: $0 \le z_2 \le 1$ м.

$$\overline{M} = -1 \cdot z_2.$$

Участок 3: $0 \le z_3 \le 1$ м.

$$\overline{M} = -1 \cdot (1 + z_3) = -1 - z_3.$$

Запишем интеграл Мора для определения прогиба в сечении C [1–4]:

$$\Delta_C = \sum_{1}^{n} \int_{0}^{l_i} \frac{M_{F_i} \overline{M}_i}{EI} dz = \frac{1}{EI} \left(\int_{0}^{1} (2 + 2 \cdot z_2) \cdot (-1 \cdot z_2) dz + \int_{0}^{1} (4 - 6 \cdot z_3) \cdot (-1 - z_3) dz \right) = -\frac{8}{3EI}.$$

Пример 2 — Для стальной балки (рисунок 5.3) определить угол поворота сечения C при помощи интеграла Мора.

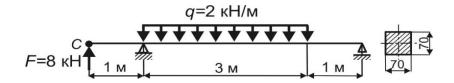


Рисунок 5.3

Решение

Покажем грузовое (действительное) состояние балки, вызванное заданными нагрузками (рисунок 5.4, a).

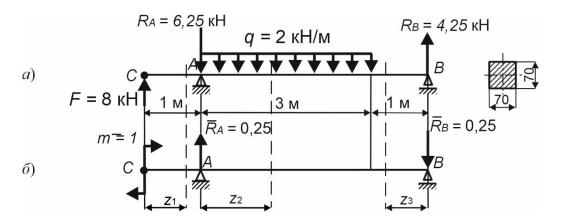


Рисунок 5.4

Покажем единичное (фиктивное) состояние балки [1–4], вызванное действием единичной нагрузки (рисунок 5.4, δ). В этом состоянии балка освобождается от заданных нагрузок. В сечении C приложим единичный момент m=1. Разобьем балки на три участка.

Запишем интеграл Мора для определения угла поворота в сечении C [1–4]:

$$\Theta_{C} = \sum_{1}^{n} \int_{0}^{l_{i}} \frac{M_{F_{i}} \overline{M}_{i}}{EI} dz = \frac{1}{EI} \left(\int_{0}^{1} (8 \cdot z_{1}) \cdot 1 dz + \int_{0}^{3} \left(8 \cdot (1 + z_{2}) - 6,25 \cdot z_{2} - 2 \cdot \frac{z_{2}^{2}}{2} \right) \times \frac{1}{2} \right) dz$$

$$\times \left(1 - 0.25 \cdot z_{2}\right) dz + \int_{0}^{1} (4.25 \cdot z_{2}) \cdot (0.25 \cdot z_{2}) dz = \frac{19.354}{EI}.$$

Осевой момент инерции заданного квадратного сечения, в соответствии с таблицей А.1,

$$I_x = \frac{b^4}{12} = \frac{7^4}{12} = 200,08 \text{ cm}^4.$$

Модуль продольной упругости, в соответствии с таблицей Б.1, $E = 2 \cdot 10^5 \, \mathrm{M\Pi a}$ или $E = 2 \cdot 10^{11} \, \mathrm{\Pi a}$.

Окончательно

$$\Theta_C = \frac{19,354 \cdot 10^3}{2 \cdot 10^{11} \cdot 200,08 \cdot 10^{-8}} = 0,048$$
 рад.

Пример 3 (для самостоятельного решения) — Определить прогиб в сечении C стальной балки при помощи интеграла Мора (рисунок 5.5).

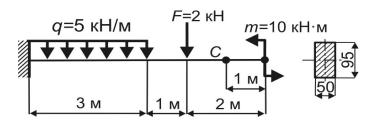


Рисунок 5.5

Пример 4 (для самостоятельного решения) — Определить угол поворота сечения A стальной балки при помощи интеграла Мора (рисунок 5.6).

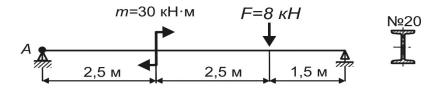


Рисунок 5.6

Контрольные вопросы

- 1 Запишите выражение для определения потенциальной энергии деформаций при изгибе.
 - 2 Сформулируйте теоремы о взаимности работ и перемещений.
- 3 Что обозначают коэффициенты в обозначении линейных и угловых перемешений?
 - 4 Запишите интеграл Мора для определения перемещений при изгибе.
 - 5 Что такое грузовое (действительное) состояние системы?
 - 6 Что такое единичное (фиктивное) состояние системы?
 - 7 Опишите порядок определения перемещений по методу Мора.

6 Определение угловых и линейных перемещений в балках (способ Верещагина)

Пример 1 – Для консольной балки постоянной жесткости (рисунок 6.1, a) определить прогиб в сечении C способом Верещагина.

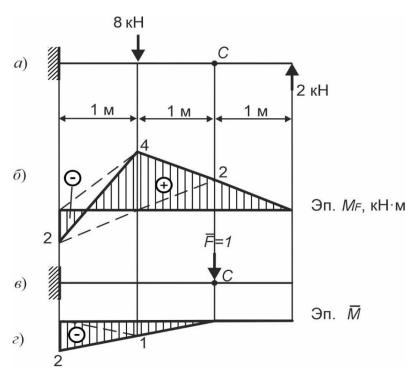


Рисунок 6.1

Решение

Рассмотрим грузовое состояние системы (см. рисунок 6.1, a). От заданных нагрузок построим грузовую эпюру M_F (рисунок 6.1, δ).

Рассмотрим единичное состояние системы (рисунок 6.1, ϵ). От единичной силы, приложенной в сечении C, построим эпюру \overline{M} (рисунок 6.1, ϵ).

Определим прогиб в сечении C, перемножая единичную и грузовую эпюры [1–4]:

$$\Delta_{C} = \sum_{1}^{n} \frac{\omega_{F_{i}} \cdot y_{C_{i}}}{EI_{X}} = \frac{1}{EI_{X}} \left[\left(-\frac{1}{2} \cdot 4 \cdot 1 \cdot \frac{2}{3} \cdot 1 - \frac{1}{2} \cdot 2 \cdot 1 \cdot \frac{1}{3} 1 \right) + \left(-\frac{1}{2} \cdot 4 \cdot 1 \cdot \left(\frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 2 \right) + \frac{1}{2} \cdot 2 \cdot 1 \cdot \left(\frac{1}{3} \cdot 1 + \frac{2}{3} \cdot 2 \right) \right) \right] = -\frac{8}{3EI}.$$

Пример 2 — Для заданной стальной балки (рисунок 6.2, a) определить прогиб в сечении C способом Верещагина. Сечение балки состоит из двух двутавров № 18.

Дано: двутавр № 18 ($I_{X_{\partial s}}=1290\,$ см 4); модуль продольной упругости стали, в соответствии с таблицей Б.1, $E=2\cdot 10^{11}\,$ Па.

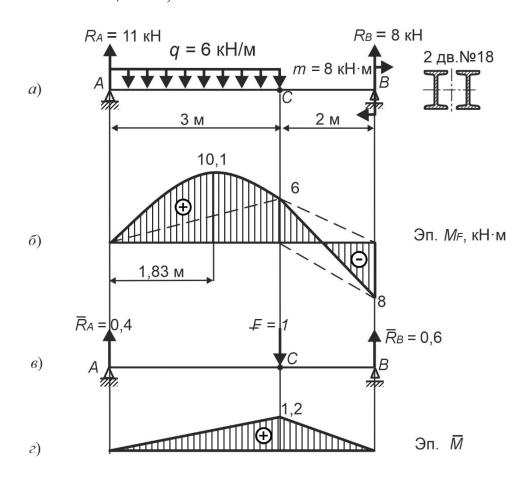


Рисунок 6.2

Рассмотрим грузовое состояние балки (см. рисунок 6.2, a). Определим реакции опор от заданной нагрузки и построим грузовую эпюру M_F (рисунок 6.2, δ).

Рассмотрим единичное состояние балки (рисунок 6.2, ϵ). От силы $\overline{F}=1$, приложенной в сечении C, найдем опорные реакции и построим единичную эпюру \overline{M} (рисунок 6.2, ϵ).

Определим прогиб сечения C перемножением единичной и грузовой эпюр:

$$\Delta_C = \sum_{1}^{n} \frac{\omega_{F_i} \cdot \overline{M}_{C_i}}{EI_X} = \frac{1}{EI_X} \left[\frac{1}{2} \cdot 6 \cdot 3 \cdot \frac{2}{3} \cdot 1, 2 + \frac{6 \cdot 3^3}{12} \cdot \frac{1}{2} \cdot 1, 2 + \frac{1}{2} \cdot 6 \cdot 2 \cdot \frac{2}{3} \cdot 1, 2 - \frac{1}{2} \cdot 8 \cdot 2 \cdot 1, 2 \cdot \frac{1}{3} \right] = \frac{84.5}{3EI_X}.$$

Осевой момент инерции заданного сечения

$$I_X = 2 \cdot I_{X_{obs}} = 2 \cdot 1290 = 2580 \text{ cm}^4.$$

Окончательно

$$\Delta_C = \frac{84.5}{3EI_X} = \frac{84.5 \cdot 10^3}{3 \cdot 2 \cdot 10^{11} \cdot 2580 \cdot 10^{-8}} = 5,46 \cdot 10^{-3} \text{ m}.$$

Пример 3 — Для заданной стальной балки (рисунок 6.3, a) определить угол поворота сечения C способом Верещагина.

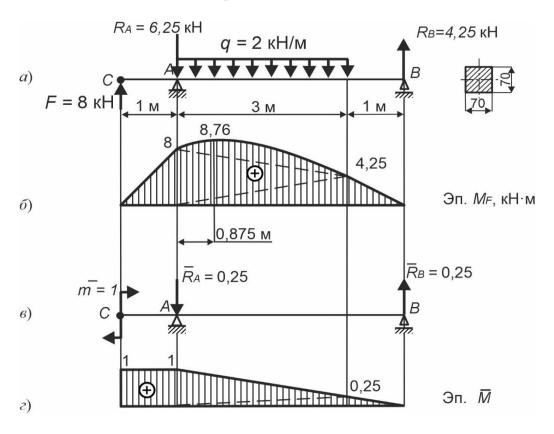


Рисунок 6.3

Решение

Рассмотрим грузовое состояние балки (см. рисунок 6.3, a). Определим реакции опор от заданной нагрузки и построим грузовую эпюру M_F (рисунок 6.3, δ).

Рассмотрим единичное состояние балки (рисунок 6.3, ε). От момента $\overline{m} = 1$, приложенного в сечении C, найдем опорные реакции и построим единичную эпюру \overline{M} (рисунок 6.3, ε).

Определим прогиб сечения C перемножением единичной и грузовой эпюр:

$$\Theta_{C} = \sum_{1}^{n} \frac{\Theta_{F_{i}} \cdot \overline{M}_{C_{i}}}{EI_{X}} = \frac{1}{EI_{X}} \left[\frac{1}{2} \cdot 8 \cdot 1 \cdot 1 + \left(\frac{1}{2} \cdot 8 \cdot 3 \cdot \left(\frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 0, 25 \right) + \frac{1}{2} \cdot 4, 25 \cdot 3 \cdot \left(\frac{1}{3} \cdot 1 + \frac{2}{3} \cdot 0, 25 \right) + \frac{6 \cdot 3^{3}}{12} \cdot \frac{1}{2} \cdot \left(1 + 0, 25 \right) \right) + \frac{1}{2} \cdot 4, 25 \cdot 1 \cdot \frac{2}{3} \cdot 0, 25 \right) = \frac{19,354}{E \cdot I_{X}}.$$

Осевой момент инерции заданного квадратного сечения, в соответствии с таблицей А.1,

$$I_x = \frac{b^4}{12} = \frac{7^4}{12} = 200,08 \text{ cm}^4.$$

Модуль продольной упругости, в соответствии с таблицей Б.1, $E=2\cdot 10^5\,\mathrm{M\Pi a}$ или $E=2\cdot 10^{11}\,\mathrm{\Pi a}$.

Окончательно

$$\Theta_C = \frac{19,354 \cdot 10^3}{2 \cdot 10^{11} \cdot 200,08 \cdot 10^{-8}} = 0,048$$
 рад.

Пример 4 (для самостоятельного решения) — Определить прогиб в сечении C стальной балки (рисунок 6.4).

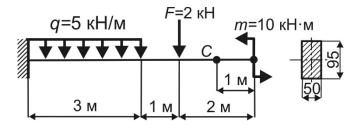


Рисунок 6.5

Пример 5 (для самостоятельного решения) — Определить угол поворота сечения A стальной балки при помощи интеграла Мора (рисунок 6.4).

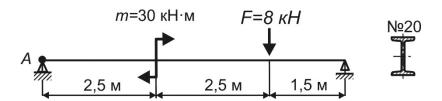


Рисунок 6.4

Контрольные вопросы

- 1 Запишите выражение для определения перемещений способом Верещагина.
- 2 Какие нагрузки рассматриваются при построении грузовой эпюры?
- 3 Какие нагрузки рассматриваются при построении единичной эпюры?
- 4 Как перемножать эпюры по способу Верещагина?
- 5 Какие ограничения накладываются на применение способа Верещагина?
- 6 Опишите порядок определения перемещений по Верещагину.

7 Решение статически неопределимых балок методом сил

Пример 1 — Определить размеры поперечного сечения балки, изображенной на рисунке 7.1.

Исходные данные: допускаемое напряжение $[\sigma]$ = 160 МПа.

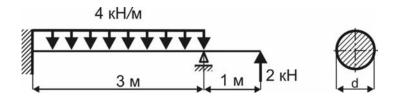


Рисунок 7.1

Решение

Степень статической неопределимости заданной балки (рисунок 7.2)

$$S = R - 3 = 4 - 3 = 1$$
.

Выберем основную систему (см. рисунок 7.2), освободив балку от заданной нагрузки и дополнительной связи.

Получим эквивалентную систему (см. рисунок 7.2), в которой приложим заданные нагрузки и реакцию дополнительной связи.

Составим каноническое уравнение метода сил [1-4]:

$$X_1 \cdot \delta_{11} + \Delta_{1F} = 0.$$

Приложим к основной системе заданные нагрузки и построим грузовую эпюру $M_{\scriptscriptstyle F}$ (см. рисунок 7.2).

Приложим к основной системе единичную нагрузку $\overline{X}_1 = 1$ и построим единичную эпюру \overline{M}_1 (см. рисунок 7.2).

Определим коэффициенты канонического уравнения метода сил способом Верещагина [1–4]:

$$\delta_{11} = \frac{\overline{M}_1 \cdot \overline{M}_1}{EI} = \frac{1}{EI} \cdot \frac{1}{2} \cdot 3 \cdot 3 \cdot \frac{2}{3} \cdot 3 = \frac{9}{EI};$$

$$\Delta_{1F} = \frac{M_F \cdot \overline{M}_1}{EI} = \frac{1}{EI} \left(\frac{1}{2} \cdot 2 \cdot 3 \cdot \frac{1}{3} \cdot 3 - \frac{1}{2} \cdot 3 \cdot 10 \cdot \frac{2}{3} \cdot 3 + \frac{4 \cdot 3^3}{12} \cdot \frac{1}{2} \cdot 3 \right) = -\frac{40.5}{EI}.$$

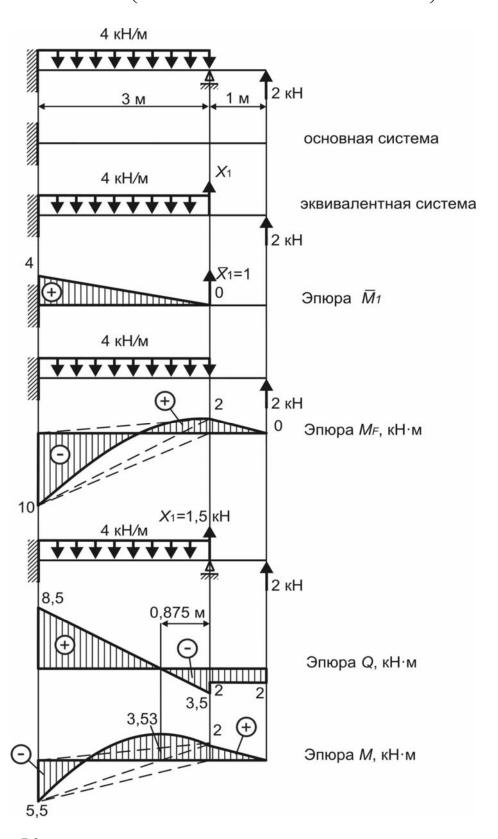


Рисунок 7.2

Решим каноническое уравнение метода сил с учетом найденных коэффициентов:

$$X_1 \cdot \frac{9}{EI} - \frac{40.5}{EI} = 0; \ X_1 = 1.5 \text{ kH}.$$

Построим окончательные эпюры поперечных сил Q и изгибающих моментов M (см. рисунок 7.2).

Выполним деформационную проверку [1-4]:

$$\Delta_{1F} = \frac{M \cdot \overline{M}_{1}}{EI} = 0;$$

$$\Delta_{1F} = \frac{M \cdot \overline{M}_{1}}{EI} = \frac{1}{EI} \left(\frac{1}{2} \cdot 2 \cdot 3 \cdot \frac{1}{3} \cdot 3 - \frac{1}{2} \cdot 3 \cdot 5, 5 \cdot \frac{2}{3} \cdot 3 + \frac{4 \cdot 3^{3}}{12} \cdot \frac{1}{2} \cdot 3 \right) = 0.$$

Из условия прочности по нормальным напряжениям определим диаметр балки:

$$\sigma_{\text{max}} = \frac{M_{\text{max}}}{W_X} = \frac{32 \cdot M_{\text{max}}}{\pi \cdot d^3} \le [\sigma];$$

$$d \ge \sqrt[3]{\frac{32 \cdot M_{\text{max}}}{\pi \cdot [\sigma]}} = \sqrt[3]{\frac{32 \cdot 5.5 \cdot 10^3}{3.14 \cdot 160 \cdot 10^6}} = 7.05 \cdot 10^{-2} \text{ M} = 70.5 \text{ MM}.$$

Пример 2 (для самостоятельного решения) — Определить размеры поперечного сечения для балки, изображенной на рисунке 7.3.

Исходные данные: m=12 кH·м, $m_1=18$ кH·м, $l_1=1,5$ м, $l_2=2$ м, $[\sigma]=160$ МПА, h=2b.

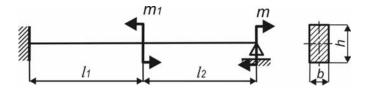


Рисунок 7.3

Пример 3 (для самостоятельного решения) – Проверить прочность балки, изображенной на рисунке 7.4.

Исходные данные: F = 18 кH, $l_1 = 1$ м, $l_2 = 2$ м, $l_3 = 1$ м, $[\sigma] = 160$ МПА.

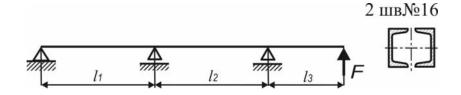
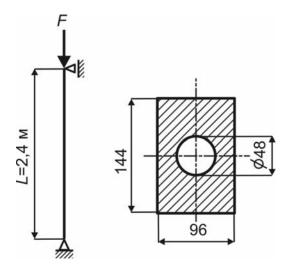


Рисунок 7.4

Контрольные вопросы

- 1 Какие системы называют статически неопределимыми?
- 2 Что называют степенью статической неопределимости?
- 3 Какие системы являются геометрически неизменяемыми?
- 4 Что такое основная система?
- 5 Что такое эквивалентная система?
- 6 Запишите канонические уравнения метода сил. Объясните их физический смысл.
 - 7 Что означают величины $X_1, X_2, ..., X_n$?
 - 8 Что означают величины δ_{ii} , δ_{ik} , δ_{ki} , δ_{ki} ?
 - 9 Что означают величины $\Delta_{1F}, \Delta_{2F}, ..., \Delta_{iF}$?
- 10 Как строятся единичные эпюры? Как определить необходимое количество единичных эпюр?
 - 11 Как строится грузовая эпюра?
- 12 Какие эпюры необходимо перемножить, чтобы определить коэффициенты δ_{in} , δ_{nn} ? Могут ли указанные коэффициенты быть отрицательными?
- 13 Какие эпюры необходимо перемножить, чтобы определить коэффициенты δ_{in} , δ_{ni} ? Будут ли указанные коэффициенты равны между собой?
- 14 Какие эпюры необходимо перемножить для определения грузовых коэффициентов?
- 15 Какими способами можно построить окончательные эпюры поперечных сил и изгибающих моментов?
 - 16 Каким образом выполняется деформационная проверка?
 - 17 Запишите условие прочности для статически неопределимой балки.


8 Определение критической нагрузки при потере устойчивости центрально сжатого стержня

Пример 1 — Для стального стержня (рисунок 8.1) требуется определить допускаемое значение сжимающей нагрузки F, критическую силу $F_{\kappa p}$ и коэффициент запаса устойчивости n_y .

Исходные данные: материал стержня — сталь 3, модуль продольной упругости стали, в соответствии с таблицей Б.1, $E=2\cdot10^5$ МПа, a=310 МПа, b=1,14 МПа, $\mu=1$; $[\sigma]=160$ МПа.

Решение

Определим геометрические характеристики заданного поперечного сечения, которое состоит из двух простых фигур: I — прямоугольник, 2 — круг (рисунок 8.2).

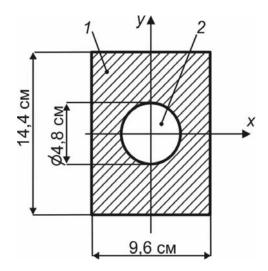


Рисунок 8.1

Рисунок 8.2

Площадь сечения

$$A = A_1 - A_2 = 9,6.14,4 - \frac{3,14.4,8^2}{4} = 120,14 \text{ cm}^2.$$

Главные центральные моменты инерции [1-4]

$$I_X = I_{X_1} - I_{X_2} = \frac{9,6 \cdot 14,4^3}{12} - \frac{3,14 \cdot 4,8^4}{64} = 2362,73$$
 cm⁴;

$$I_y = I_{y_1} - I_{y_2} = \frac{14, 4 \cdot 9, 6^3}{12} - \frac{3, 14 \cdot 4, 8^4}{64} = 1035, 63 \text{ cm}^4.$$

Минимальный момент инерции $I_{\min} = I_X = 1035,63$ см⁴.

Минимальный радиус инерции

$$i_{\min} = \sqrt{\frac{I_{\min}}{A}} = \sqrt{\frac{1035,63}{120,14}} = 2,93 \text{ cm}.$$

Определяем максимальную гибкость стержня относительно материальной оси x:

$$\lambda_X = \frac{\mu \cdot l}{i_{\min}} = \frac{1 \cdot 2, 4}{2,93 \cdot 10^{-2}} = 81, 9.$$

Определим коэффициент продольного изгиба в соответствии с таблицей Б.1:

$$\lambda = 80;$$
 $\phi = 0.75;$ $\lambda = 90;$ $\phi = 0.69.$

Уточним значение коэффициента продольного изгиба ф по методу интерполяции:

$$\varphi = 0,75 - \frac{0,75 - 0,69}{90 - 80} \cdot (81,9 - 80) = 0,74.$$

Из условия устойчивости стержня [1–4] определим допускаемое значение сжимающей силы:

$$\sigma_{y} = \frac{F}{A} \leq \varphi \cdot [\sigma];$$

$$[F] = \varphi \cdot A \cdot [\sigma] = 0.74 \cdot 120.14 \cdot 10^{-4} \cdot 160 \cdot 10^{6} = 14224.6 \cdot 10^{2} \text{ H}.$$

Так как полученное значение гибкости меньше предельного значения для стали (λ_{nped} =100), критическую силу определим по формуле Ясинского [1–4]:

$$F_{\kappa\rho} = (a - b \cdot \lambda) \cdot A = (310 - 1,14 \cdot 81,9) \cdot 10^2 \cdot 120,14 \cdot 10^{-4} = 26026,4 \cdot 10^2 \text{ H}.$$

Коэффициент запаса устойчивости

$$n_y = \frac{F_{\kappa p}}{[F]} = \frac{26026, 4 \cdot 10^2}{14224, 6 \cdot 10^2} = 1,83.$$

Пример 2 (для самостоятельного решения) — Определить критическую силу для двух случаев закрепления стержня (рисунок 7.4).

Исходные данные: материал — сталь 3, b=60 мм, h=40 мм , L=2 м.

Пример 4 (для самостоямельного решения) — Определить коэффициент запаса устойчивости стержня, изображенного на рисунке 7.5.

Исходные данные: материал – сталь 5, d = 60 мм, L = 3 м, $[\sigma] = 180$ МПа.

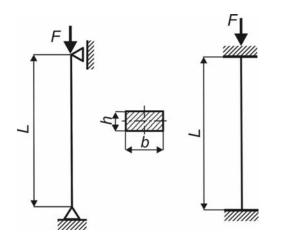


Рисунок 8.3

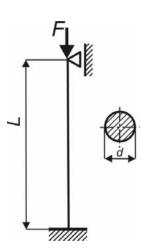


Рисунок 8.4

Контрольные вопросы

- 1 Дайте определение устойчивости.
- 2 Назовите формы равновесия.
- 3 Что является признаком потери устойчивости?
- 4 Дайте определение критической силы.
- 5 Запишите выражение для определения гибкости стержня.
- 6 Как определить коэффициент приведения длины стержня?
- 7 Запишите формулу Эйлера. В каких случаях она применима для определения критической силы?
- 8 Запишите формулу Ясинского. В каких случаях она применима для определения критической силы?
 - 9 Запишите условие устойчивости.
 - 10 Как определяется коэффициент продольного изгиба?
 - 11 Запишите выражение для определения коэффициента запаса устойчивости.

9 Расчет составного сечения продольно сжатого стержня на устойчивость

Пример 1 – Для стального стержня (рисунок 9.1) определить допускаемое значение сжимающей нагрузки F, критическую силу $F_{\kappa p}$ и коэффициент запаса устойчивости n_{ν} .

Исходные данные: допускаемое напряжение [σ] = 160 МПа, длина стержня $L=2,8\,$ м, $c=20\,$ мм, швеллер № 18 ($A^{uus}=20,7\,$ см², $I_X^{uus}=1090\,$ см³, $I_Y^{uus}=86\,$ см³), $z_0=1,94\,$ см, материал стержня — сталь 3, модуль продольной упругости стали $E=2\cdot10^5\,$ МПа.

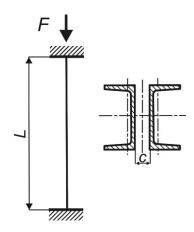


Рисунок 9.1

Решение

Определим геометрические характеристики заданного составного поперечного сечения, которое состоит из двух швеллеров (рисунок 9.2).

Площадь сечения

$$A = 2 \cdot A^{me} = 2 \cdot 20, 7 = 41, 4 \text{ cm}^2.$$

Главные центральные моменты инерции рассчитаем по формулам при параллельном переносе осей [1–4]

$$Ix = 2 \cdot \left(I_X^{uig} + c^2 \cdot A^{uig}\right) = 2 \cdot I_X^{uig} = 2 \cdot 1090 = 2180 \text{ cm}^4;$$
$$Iy_C = 2 \cdot \left(I_Y^{uig} + d^2 \cdot A^{uig}\right) = 2 \cdot \left(86 + 2,94^2 \cdot 20,7\right) = 529 \text{ cm}^4.$$

Радиусы инерции

$$i_{X} = \sqrt{\frac{I_{X}}{A}} = \sqrt{\frac{2180}{41,4}} = 7,26 \text{ cm}; \qquad i_{Y} = \sqrt{\frac{I_{Y}}{A}} = \sqrt{\frac{529}{41,4}} = 3,57 \text{ cm}.$$

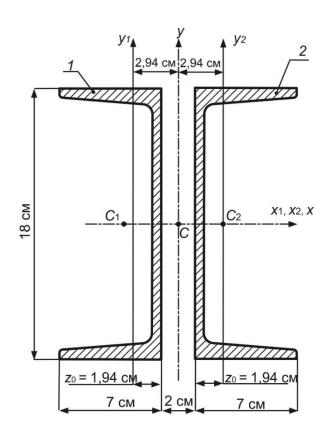


Рисунок 9.2

Рассчитаем гибкость стержня относительно материальной оси x:

$$\lambda_X = \frac{\mu \cdot l}{i_{\min}} = \frac{0.5 \cdot 280}{7.26} = 19.3.$$

Определим гибкость стержня относительно свободной оси у:

$$\lambda_X = \sqrt{\left(\frac{\mu \cdot l}{i_{\min}}\right)^2 + 40^2} = \sqrt{\left(\frac{0.5 \cdot 280}{3.57}\right)^2 + 40^2} = 56,02.$$

Определим коэффициент продольного изгиба в соответствии с таблицей Б.1:

$$\begin{array}{ll} \lambda = 50; & \phi = 0.89; \\ \lambda = 60; & \phi = 0.86. \end{array}$$

Уточним значение коэффициента продольного изгиба ф по методу интерполяции:

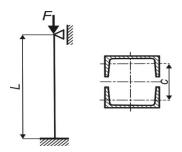
$$\varphi = 0.89 - \frac{0.89 - 0.86}{60 - 50} \cdot (56.02 - 50) = 0.87.$$

Из условия устойчивости стержня [1–4] определим допускаемое значение сжимающей силы:

$$\sigma_{y} = \frac{F}{A} \leq \varphi \cdot [\sigma];$$

$$[F] = \varphi \cdot A \cdot [\sigma] = 0.87 \cdot 41.4 \cdot 10^{-4} \cdot 160 \cdot 10^{6} = 576.3$$
 kH.

Так как полученное значение гибкости меньше предельного значения для стали ($\lambda_{npeo} = 100$), критическую силу определим по формуле Ясинского [1–4]:


$$F_{\kappa p} = (a - b \cdot \lambda) \cdot A = (310 - 1,14 \cdot 56,02) \cdot 10^6 \cdot 41,4 \cdot 10^{-4} = 1019$$
 H.

Коэффициент запаса устойчивости

$$n_y = \frac{F_{\kappa p}}{[F]} = \frac{1019}{576,3} = 1,77.$$

Пример 2 — Для стального стержня (рисунок 9.3) определить допускаемое значение сжимающей нагрузки F, критическую силу $F_{\kappa p}$ и коэффициент запаса устойчивости n_{ν} .

Исходные данные: допускаемое напряжение [σ] = 160 МПа, длина стержня L = 4 м, c = 100 мм, швеллер № 10, материал стержня — сталь 3, модуль продольной упругости стали E = $2 \cdot 10^5$ МПа.

Контрольные вопросы

- 1 Какая из главных центральных осей является материальной осью?
- 2 Какая из главных центральных осей является свободной осью?
- 3 Запишите формулы для определения гибкости стержня относительно свободной оси и материальной оси.

10 Продольный и поперечный удары по брусу. Определение деформаций и напряжений в стержне. Расчет на прочность и жесткость стержневых конструкций при нагружении ударом

Пример 1 — На двутавровую стальную балку с высоты h падает груз G (рисунок 10.1, a). Проверить прочность, если $[\sigma]$ = 160 МПа, и определить возникающие перемещения.

Исходные данные : двутавр № 20 ($W_x = 184 \text{ см}^3$, $I_x = 1840 \text{ см}^4$), модуль продольной упругости $E = 2 \cdot 10^5 \text{ МПа}$, $[\sigma] = 160 \text{ МПа}$.

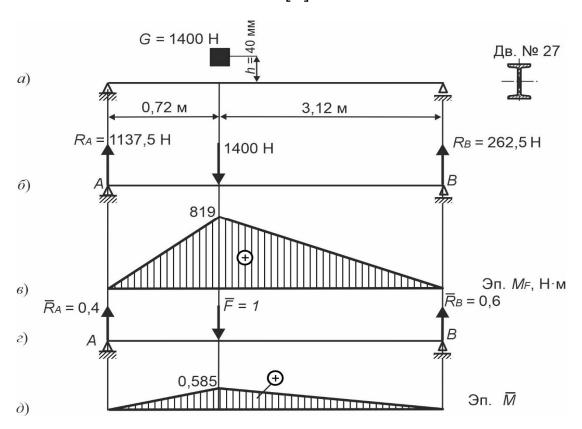


Рисунок 10.1

Решение

Ударная нагрузка вызывает изгиб заданной балки (см. рисунок 10.1, a).

Приложим к балке груз G статически (рисунок 10.1, δ). Определим реакции опор от статической нагрузки. Построим эпюру изгибающих моментов M_E

от статической нагрузки (рисунок 10.1, ϵ). По этой эпюре определим величину максимального изгибающего момента $M_{\rm max} = 819~{\rm H\cdot M}$.

Максимальные статические напряжения

$$\sigma_{\text{max}}^{cm} = \frac{M_{\text{max}}}{W_{x}} = \frac{819}{184 \cdot 10^{-6}} = 4,45 \text{ M}\Pi a.$$

Приложим к балке единичную силу $\overline{F}=1$. Определим реакции опор от единичной силы (рисунок 10.1, ε). Построим единичную эпюру \overline{M} (см. рисунок 10.1, θ).

По способу Верещагина определим перемещение в точке удара:

$$\Delta_{cm} = \frac{M_F \cdot \overline{M}}{EI_X} = \left(\frac{1}{2} \cdot 819 \cdot 0,72 \cdot \frac{2}{3} \cdot 0,585 + \frac{1}{2} \cdot 819 \cdot 3,12 \cdot \frac{2}{3} \cdot 0,585\right) =$$

$$= \frac{613,27}{EI_X} = \frac{613,27}{2 \cdot 10^{11} \cdot 1840 \cdot 10^{-8}} = 0,000166 \text{ m}.$$

Динамический коэффициент [1-4]

$$k_{\perp} = 1 + \sqrt{1 + \frac{2h}{\Delta_{cm}}} = 1 + \sqrt{1 + \frac{2 \cdot 40 \cdot 10^{-3}}{0,000166}} = 24.$$

Максимальные динамические напряжения

$$\sigma_{\text{max}}^{\mathcal{A}} = k_{\mathcal{A}} \cdot \sigma_{\text{max}}^{cm} = 24 \cdot 4,45 = 106,8 \text{ M}\Pi a.$$

Условие прочности

$$\sigma_{\text{max}}^{\mathcal{I}} = 106,8 \text{ M}\Pi \text{a} < [\sigma] = 160 \text{ M}\Pi \text{a}.$$

Условие прочности выполнено. Прочность обеспечена.

Перемещение
$$\Delta_{II} = k_{II} \cdot \Delta_{cm} = 24 \cdot 0,000166 = 0,004 \,\mathrm{M}.$$

Пример 2 (для самостоямельного решения) — Проверить прочность и определить возникающие перемещения для заданной балки (рисунок 10.2).

Исходные данные:
$$v = 1,2$$
 м/с, $b = 85$ мм, $[\sigma] = 160$ МПа.

Пример 3 (для самостоятельного решения) — Определить максимальные напряжения и перемещения, возникающие в поперечных сечениях бруса, изображенного на рисунке 10.3.

Исходные данные: G = 9 кH, $l_1 = 1$ м, $l_2 = 2$ м, $l_3 = 1,5$ м, h = 14 мм, $A_1 = 1$ см², $A_2 = 2$ см², $A_3 = 1,5$ см², материал – сталь 3.

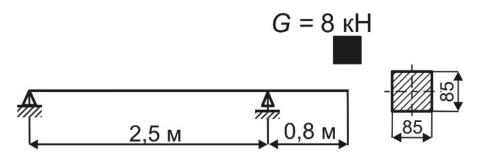


Рисунок 10.2

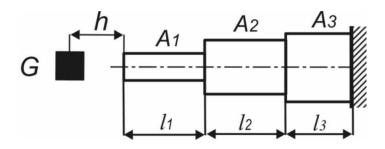


Рисунок 10.3

Контрольные вопросы

- 1 Какая нагрузка называется динамической?
- 2 Что такое динамический коэффициент?
- 3 Запишите формулу для определения напряжений при динамическом действии нагрузок.
- 4 Запишите выражение для определения динамического коэффициента в случае, когда груз поднимается (опускается) с постоянным ускорением.
 - 5 Что такое удар?
 - 6 Какие допущения приняты при расчете на ударное нагружение?
- 7 Запишите формулу для определения динамического коэффициента при ударе.
- 8 Запишите условие прочности для случая, когда удар вызывает изгиб бруса.
- 9 Запишите условие прочности для случая, когда удар вызывает растяжение (сжатие) бруса.

11 Решение плоской задачи теории упругости с использованием функции напряжений

Для решения плоской задачи теории упругости необходимо ознакомиться с теоретическим материалом [5].

Контрольные вопросы

1 Перечислите основные уравнения, используемые при решении плоской задачи теории упругости.

- 2 Запишите дифференциальные уравнения равновесия.
- 3 Запишите условия на поверхности.
- 4 Запишите уравнения сплошности.
- 5 Какие уравнения используют для определения напряжений в произвольных точках балки.
 - 6 Какие напряжения называют главными?
 - 7 Как определить положение главных площадок?
- 8 Запишите выражения для определения компонент главных напряжений при плоском напряженном состоянии.
 - 9 Запишите бигармоническое уравнение относительно функции напряжений.

12 Принципы трехмерного проектирования изделий в САПР SolidWorks

Для подготовки к данному практическому занятию необходимо ознакомиться с теоретическим материалом [6].

Контрольные вопросы

- 1 Объясните сущность метода конечных элементов.
- 2 Назовите виды конечных элементов.
- 3 Перечислите этапы решения задач посредством метода конечных элементов.
- 4 Какие факторы влияют на точность расчета методом конечных элементов.
- 5 Какие шаблоны документа используются для создания 3D-моделей в CAПР SolidWorks?
- 6 Назовите общий порядок действий при создании 3D-моделей в САПР SolidWorks.
- 7 Опишите порядок построения твердотельной модели цилиндричесого объекта.
- 8 Какие инструменты САПР SolidWorks используют для изменения ориентации вида?
- 9 Какие инструменты САПР SolidWorks используют для изменения масштаба объекта?
 - 10 Назовите порядок действий при создании сборки в САПР SolidWorks.
 - 11 Дайте определение понятию «сборка».

13 Расчет ступенчатого бруса в САПР SolidWorks

Для подготовки к данному практическому занятию необходимо ознакомиться с теоретическим материалом [6].

Контрольные вопросы

- 1 Какой шаблон документа используется для создания 3D-модели ступенчатого бруса в данном случае?
 - 2 Опишите процесс создания модели ступенчатого бруса.
- 3 Перечислите типы анализов изделий, производимые в программном комплексе SolidWorks Simulation.
- 4 Объясните, в каких областях исследуемого объекта прикладывается нагрузка при выполнении статического анализа.
- 5 Перечислите механические характеристики материала, используемые для статического анализа бруса.
 - 6 Как создать условия закрепления бруса?
 - 7 Как создать сетку разбиения изделия на конечные элементы?
- 8 Как начать расчет напряжений и деформаций бруса в SolidWorks Simulation?
- 9 Опишите процесс отображения результатов расчета напряжений и деформаций.
- 10 Как установить точное значение параметра эпюры в конкретной узловой точке конечно-элементной модели исследуемого объекта.

Список литературы

- 1 **Кузменко, И. М.** Механика материалов : учебное пособие : в 2 ч. / И. М. Кузменко. Могилев : Белорус.- Рос. ун-т, 2020. Ч. 1. 289 с.: ил.
- 2 **Зиневич, С. И.** Сопротивление материалов. Практикум: учеб.-метод. пособие / С. И. Зиневич. Минск; М.: Новое знание; ИНФРА-М, 2015. 316 с.: ил.
- 3 Дарков, А. В. Сопротивление материалов: учебник / А. В. Дарков, Г. С. Шпиро. 5-е изд., перераб. и доп. М. : АльянС, 2018. 624 с.
- 4 **Кривошапко, С. Н.** Сопротивление материалов : учебник и практикум / С. Н. Кривошапко. М. : Юрайт, 2016. 413 с.
- 5 Сиренко, Р. Н. Сопротивление материалов: учеб. пособие / Р. Н. Сиренко. М. : РИОР, 2007. 157 с.: ил.
- 6 **Подскребко, М. Д.** Сопротивление материалов. Основы теории упругости, пластичности, ползучести и механики разрушения : учеб. пособие / М. Д. Подскребко. Минск : Выш. шк., 2009. 670 с.
- 7 **Попковский, В. А.** Компьютерное моделирование и инженерный анализ. Лабораторный практикум: учеб. пособие / В. А. Попковский. Могилев: Белорус.-Рос. ун-т, 2025. 291 с.: ил.

Приложение A (справочное)

Таблица А.1 – Геометрические характеристики некоторых сечений

Сечение	Площадь	Осевой момент	Момент	
	сечения <i>b</i> · <i>h</i>	инерции I_x , I_y $I_x = \frac{b \cdot h^3}{12}; I_y = \frac{h \cdot b^3}{12}$	сопротивления W_x , W_y $W_x = \frac{b \cdot h^2}{6}; W_y = \frac{h \cdot b^2}{6}$	
q	b^2	$I_{_X} = I_{_Y} = \frac{b^4}{12}$	$W_X = W_V = \frac{b^3}{6}$	
	$\frac{\pi \cdot d^2}{4}$	$I_{x} = I_{y} = \frac{\pi \cdot d^{4}}{64};$ $I_{p} = \frac{\pi \cdot d^{4}}{32}$	$W_{X} = W_{Y} = \frac{\pi \cdot d^{3}}{32};$ $W_{\rho} = \frac{\pi \cdot d^{3}}{16}$	
	$\frac{b \cdot h}{2}$	$I_{x} = \frac{b \cdot h^{3}}{36}; \ I_{y} = \frac{h \cdot b^{3}}{48}$	$W_{XB} = \frac{b \cdot h^2}{24};$ $W_{XH} = \frac{b \cdot h^2}{12};$ $W_y = \frac{b \cdot h^2}{24}$	
4 July 1	$\frac{b \cdot h}{2}$	$I_{x} = \frac{b \cdot h^{3}}{36}$; $I_{y} = \frac{h \cdot b^{3}}{36}$	$W_{XB} = \frac{b \cdot h^2}{24};$ $W_{XH} = \frac{b \cdot h^2}{12};$ $W_{VII} = \frac{b \cdot h^2}{24};$ $W_{VA} = \frac{b \cdot h^2}{12}$	

Приложение Б (справочное)

Таблица Б.1 – Значения коэффициента продольного изгиба ϕ

	Сталь марок			Чугун марок			
Гибкость λ	Ст 2, Ст 3, Ст 4	Ст 5	14Г2 15ГС 10Г2С 10Г2СД 15ХСНД	СЧ 12-28 СЧ 15-32 СЧ 18-36 СЧ 21-40	СЧ 24-44 СЧ 28-48	Дюралюминий Д16Т	Дерево (сосна, ель)
0	1,00	1,00	1,00	1,00	1,00	1,00	1,00
10	0,99	0,98	0,98	0,97	0,95	0,999	0,99
20	0,97	0,96	0,95	0,91	0,87	0,998	0,97
30	0,95	0,93	0,92	0,8	0,75	0,835	0,93
40	0,92	0,90	0,89	0,69	0,60	0,700	0,87
50	0,89	0,85	0,84	0,57	0,43	0,568	0,80
60	0,86	0,80	0,78	0,44	0,32	0,455	0,71
70	0,81	0,74	0,71	0,34	0,23	0,353	0,61
80	0,75	0,67	0,63	0,26	0,18	0,269	0,49
90	0,69	0,59	0,54	0,20	0,14	0,212	0,38
100	0,60	0,50	0,46	0,16	0,12	0,172	0,31
110	0,52	0,43	0,39			0,142	0,25
120	0,45	0,37	0,33			0,119	0,22
130	0,40	0,32	0,29			0,101	0,18
140	0,36	0,28	0,25			0,087	0,16
150	0,32	0,25	0,23			0,076	0,14
160	0,29	0,23	0,21				0,12
170	0,26	0,21	0,19				0,11
180	0,23	0,19	0,17				0,10
190	0,21	0,17	0,15				0,09
200	0,19	0,15	0,13				0,08
210	0,17	0,14	0,12				
220	0,16	0,13	0,11		_		