УДК 004.896

EQUIPMENT FAILURES PREDICTION AND SAFETY IMPROVEMENTS WITH ARTIFICIAL INTELLIGENCE

Н. А. КАРНЕЙ, Я. В. ЕРОСТЕНКО Научный руководитель Е. С. ВЕРБИЦКАЯ Белорусско-Российский университет Могилев, Беларусь

Industrial equipment failures lead to billion losses due to unplanned downtime, repair costs, and safety hazards. Reactive and preventive maintenance are no longer adequate in today's efficiency-driven manufacturing. Instead, predictive maintenance (PdM), powered by Artificial Intelligence (AI) and the Internet of Things (IoT), emerges as the optimal solution. IoT sensors play a key role in PdM since these sensors constantly monitor the condition of equipment by measuring such things as temperature, vibration, etc. The facts, they gather, help AI systems to solve problems early.

AI-based predictive maintenance is more than just failure detection – it predicts breakdowns, optimizes maintenance, and improves workplace safety. It is obvious that AI revolutionizes maintenance strategies, its real-world applications and future developments.

Speaking about the evolution of maintenance strategies, let us analyze Reactive Maintenance, Preventive Maintenance and AI-based Predictive Maintenance.

- 1. Reactive Maintenance (Run-to-Failure) is performed only after failure occurs and leads to higher downtime costs, safety risks, and production delays; for example, if a conveyor belt breaks down in the middle of a shift, it shuts down production for hours.
- 2. Preventive Maintenance (Time-Based) schedules checks and part replacements, usually resulting in duplicate maintenance and wasting resource; for example, a motor bearing is replaced every 6 months, even if it is still functional.
- 3. Predictive Maintenance (AI-based) is considered as the most advanced due to its ability to analyze vast amounts of data, predict equipment failures, and optimize maintenance schedules, ultimately leading to increased operational efficiency and reduced costs. It uses real-time sensor data and machine learning to predict failures, reduces downtime, and extends equipment life; for example, AI detects abnormal vibrations in a pump and initiates maintenance before failure.

But why does AI-Powered Predictive Maintenance outperform traditional methods? Using Artificial Intelligence in maintenance offers huge advantages for companies. It helps save money, improves processes, and extends the life of equipment. The advantages are achieved by cost savings due to reducing maintenance shutdowns by as much as 20 %...30 %; by downtime reduction resulting in cutting unplanned outages by up to 50 %; by improving safety and preventing catastrophic failures; and at last by greater sustainability, which ensures elimination of wastage by avoiding unnecessary part replacements.

A brief comparison of predictive, preventive, and reactive methods helps to understand the key differences in maintenance methods.

- 1. Predictive Maintenance utilizes AI and real-time data to forecast failures and schedule maintenance only when needed.
- 2. Preventive Maintenance relies on fixed timelines, and often results in unnecessary servicing or missed issues.
- 3. Reactive Maintenance fixes failures after they have occurred, leading to additional costs and longer downtime.

Across industries, AI-powered predictive maintenance is delivering tangible results by transforming reactive repairs into proactive prevention. Lots of examples of real-world success prove its transformative impact.

In automotive manufacturing, Toyota, like other world's top automakers, implemented AI-powered predictive maintenance, reducing unplanned downtime by 30 % and cutting maintenance costs by 20 %. By analyzing vibration patterns and thermal data from assembly line robots, the system detected anomalies before critical failures occurred.

In the energy sector, power generation firms employ AI to monitor gas turbine performance. Predictive models detect early signs of blade degradation, allowing timely interventions that improve reliability and save millions of dollars annually in emergency maintenance.

DHL, a global transportation & logistics company, implemented AI-powered fleet monitoring, which analyzed engine performance and tire wear in real time. This led to a 15 % increase in vehicle availability and a 25 % reduction in maintenance-related delays.

This is very important to understand why predictive maintenance is a necessity. For manufacturers, predictive maintenance is not a luxury anymore – it is a competitive necessity. AI-powered systems enhance failure prediction accuracy, enabling timely interventions that maximize uptime and operational efficiency. Beyond cost savings, this approach improves workplace safety by preventing catastrophic equipment failures.

AI-powered predictive maintenance is not just a high-tech tool – it is a key part of smart factories. By using AI, IoT, and data analytics, industries get higher operational efficiency because of better resource allocation. They get long-term cost savings due to fewer emergency repairs and longer equipment life. Safety is enhanced as a result of early detection of hazardous malfunctions. Reduced waste from unnecessary part replacements brings huge sustainability benefits.

As Industry 4.0 continues to grow, the application of AI in predictive maintenance will only continue to grow, and it will become a foundation of modern industrial policy.

These real-world successes prove that AI-powered predictive maintenance is more than just advanced tool – it is a proven strategy reshaping industries.

But how exactly does it work? By combining smart technologies with real-time data, AI does not just predict failures – it prevents them. The key tools and methods making it possible are as follows.

1. IoT Sensors and Real-Time Data Collection enable monitoring temperature, vibration, pressure, and acoustics.

- 2. Machine Learning Algorithms are used to train models using past failure records, detect anomalies without prior labeling and dynamically optimize maintenance schedules.
- 3. Virtual Equipment Models simulate real-world machinery to test failure scenarios.
 - 4. Generative AI predicts rare failure modes using synthetic data.

But predicting equipment failures is not magic – it is a precise, data-driven process. AI systems systematically identify and prevent breakdowns by data acquisition through sensors collecting operational data; anomaly detection, as AI is able to detect abnormal behavior; failure prediction with ML algorithms forecasting time-to-failure; and prescriptive actions by providing recommendations for optimal maintenance time.

Beyond preventing downtime, AI-powered predictive maintenance delivers crucial safety benefits. Here are three key ways how it is making industrial environments safer.

- 1. Early detection of hazardous conditions AI identifies leaks, overheating, and structural weaknesses before they arise.
- 2. Reducing human error in maintenance automated alerts eliminate reliance on manual inspections.
- 3. Compliance with safety regulations AI ensures adherence to OSHA, ISO, and industry-specific safety standards.

While AI-powered predictive maintenance delivers impressive results, their implementation is not without significant challenges. These hurdles can slow down adoption and require careful planning to overcome. Here are its current challenges that are holding companies back and the exciting innovations that will define the future.

Current limitations are the following.

- 1. Data quality issues when inconsistent sensor data can lead to false alarms.
- 2. High initial costs, it is obvious that implementing IoT + AI requires significant investment.
- 3. Workforce training is necessary, surely technicians need reskilling to interpret AI insights.

Future innovations will bring.

- 1. Edge AI improved failure detection through local (on-device) processing.
- 2. Autonomous repair robots AI-powered drones fixing equipment remotely.
- 3. Maintenance logs tamper-proof records of repairs.

But one thing is certain, namely that AI-powered maintenance is not just coming, it is already revolutionizing how industries operate. It transforming industrial operations by reducing costs, preventing failures, and saving lives. As AI models become more advanced, near-zero unplanned downtime in smart factories can be expected, as well as self-healing industrial machines capable of booking their own repair appointments, and fully autonomous industrial safety systems powered by Artificial Intelligence.

For producers, the adoption of predictive maintenance through AI is no longer an option but a competitive strategy to thrive in Industry 4.0.